• Title/Summary/Keyword: cell cycle related proteins

Search Result 137, Processing Time 0.02 seconds

Growth Inhibitory Activity of Honokiol through Cell-cycle Arrest, Apoptosis and Suppression of Akt/mTOR Signaling in Human Hepatocellular Carcinoma Cells

  • Hong, Ji-Young;Park, Hyen Joo;Bae, KiHwan;Kang, Sam Sik;Lee, Sang Kook
    • Natural Product Sciences
    • /
    • v.19 no.2
    • /
    • pp.155-159
    • /
    • 2013
  • Honokiol, a naturally occurring neolignan mainly found in Magnolia species, has exhibited a potential anti-proliferative activity in human cancer cells. However, the growth inhibitory activity against hepatocellular carcinoma cells and the underlying molecular mechanisms has been poorly determined. The present study was designed to examine the anti-proliferative effect of honokiol in SK-HEP-1 human hepatocellular cancer cells. Honokiol exerted anti-proliferative activity with cell-cycle arrest at the G0/G1 phase and sequential induction of apoptotic cell death. The cell-cycle arrest was well correlated with the down-regulation of checkpoint proteins including cyclin D1, cyclin A, cyclin E, CDK4, PCNA, retinoblastoma protein (Rb), and c-Myc. The increase of sub-G1 peak by the higher concentration of honokiol ($75{\mu}M$) was closely related to the induction of apoptosis, which was evidenced by decreased expression of Bcl-2, Bid, and caspase-9. Hohokiol was also found to attenuate the activation of signaling proteins in the Akt/mTOR and ERK pathways. These findings suggest that the anti-proliferative effect of honokiol was associated in part with the induction of cell-cycle arrest, apoptosis, and dow-nregulation of Akt/mTOR signaling pathways in human hepatocellular cancer cells.

Targeting Renal Cell Carcinoma with Gambogic Acid in Combination with Sunitinib in Vitro and in Vivo

  • Jiang, Xiao-Liang;Zhang, Yao;Luo, Chun-Li;Wu, Xiao-Hou
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6463-6468
    • /
    • 2012
  • Purpose: To evaluated the effect of the gambogic acid (GA), one of the effective components of Garcinia, in combination with a new multi-targeted oral medication, sunitinib (SU) on renal cancer cell proliferation in vitro and on tumor growth in vivo. Methods: After treatment with GA or SU, either alone or in combination, MTT and FACS analysis were used to examine cell viability and cycle distribution of the renal carcinoma cell lines 786-0 and Caki-1. Western blotting was employed to examine the expression of proteins related to the cell cycle and vascular formation. Furthermore, a xenograft model was applied to study the antitumor efficacy of SU or GA alone or in combination, with immunohistochemistry to detect expression of proteins related to xenograft growth and angiogenesis. Western blotting was used to examine NF-${\kappa}B$ signaling pathway elements in xenografts. Results: Treatment of 786-0 and Caki-1 cells with GA or SU resulted in decreased tumor cell proliferation, especially with joint use. Cells accumulated more strongly in the sub-G1 phase after joint treatment with GA and SU than treatment of GA and SU alone. Western blotting arrays showed 1 protein significantly upregulated, 2 proteins downregulated, and 2 proteins unchanged. Moreover, combined use of GA and SU inhibited the growth and angiogenesis of xenografts generated from Caki-1 significantly. Immunohistochemistry arrays showed downregulation of the expression of proteins promoting xenograft growth and angiogenesis, and Western blotting showed inhibition of the NF-${\kappa}B$ signaling pathway after treatment by GA alone and in combination with SU in xenografts. Conclusions: Our results show that the joint use of GA and SU can provide greater antitumor efficacy compared to either drug alone and thus may offer a new treatment strategy for renal cell carcinoma.

Lisophosphatidic Acid Inhibits Melanocyte Proliferation via Cell Cycle Arrest

  • Kim, Dong-Seok;Park, Seo-Hyoung;Kim, Sung-Eun;Kwon, Sun-Bang;Park, Eun-Sang;Youn, Sang-Woong;Park, Kyoung-Chan
    • Archives of Pharmacal Research
    • /
    • v.26 no.12
    • /
    • pp.1055-1060
    • /
    • 2003
  • Lysophosphatidic acid (LPA) is a well-known mitogen in various cell types. However, we found that LPA inhibits melanocyte proliferation. Thus, we further investigated the possible signaling pathways involved in melanocyte growth inhibition. We first examined the regulation of the three major subfamilies of mitogen-activated protein (MAP) kinases and of the Akt pathway by LPA. The activations of extracellular signal-regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK) were observed in concert with the inhibition of melanocyte proliferation by LPA, whereas p38 MAP kinase and Akt were not influenced by LPA. However, the specific inhibition of the ERK or JNK pathways by PD98059 or D-JNKI1, respectively, did not restore the antiproliferative effect. We next examined changes in the expression of cell cycle related proteins. LPA decreased cyclin $D_1 and cyclin D_2$ levels but increased $p21^{WAF1/CIP1}$ (p21) and $p27^{KIP1}$ (p27) levels, which are known inhibitors of cyclin-dependent kinase. Flow cytometric analysis showed the inhibition of DNA synthesis by a reduction in the S phase and an increase in the $G_0/G_1$ phase of the cell cycle. Our results suggest that LPA induces cell cycle arrest by regulating the expressions of cell cycle related proteins.

Mechanism Underlying Shikonin-induced Apoptosis and Cell Cycle Arrest on SCC25 Human Tongue Squamous Cell Carcinoma Cell Line

  • Oh, Sang-Hun;Park, Sung-Jin;Yu, Su-Bin;Kim, Yong-Ho;Kim, In-Ryoung;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • v.40 no.1
    • /
    • pp.51-61
    • /
    • 2015
  • Shikonin, a major ingredient in the traditional Chinese herb Lithospermumerythrorhizon, exhibits multiple biological functions including antimicrobial, anti-inflammatory, and antitumor effects. It has recently been reported that shikonin displays antitumor properties in many cancers. This study was aimed to investigate whether shikonin could inhibit oral squamous carcinoma cell (OSCC) growth via mechanisms of apoptosis and cell cycle arrest. The effects of shikonin on the viability and growth of OSCC cell line, SCC25 cells were assessed by MTT assay and clonogenic assays, respectively. Hoechst staining and DNA electrophoresis indicated that the shikonin-treated SCC25 cells were undergoing apoptosis. Western blotting, immunocytochemistry, confocal microscopy, flow cytometry, MMP activity, and proteasome activity also supported the finding that shikonin induces apoptosis. Shikonin treatment of SCC25 cells resulted in a time- and dose-dependent decrease in cell viability, inhibition of cell growth, and increase in apoptotic cell death. The treated SCC25 cells showed several lines of apoptotic manifestation as follows: nuclear condensation; DNA fragmentation; reduced MMP and proteasome activity; decrease in DNA contents; release of cytochrome c into cytosol; translocation of AIF and DFF40 (CAD) onto the nuclei; a significant shift in Bax/Bcl-2 ratio; and activation of caspase-9, -7, -6, and -3, as well as PARP, lamin A/C, and DFF45 (ICAD). Shikonin treatment also resulted in down-regulation of the G1 cell cycle-related proteins and up-regulation of $p27^{KIP1}$. Taken together, our present findings demonstrate that shikonin strongly inhibits cell proliferation by modulating the expression of the G1 cell cycle-related proteins, and that it induces apoptosis via the proteasome, mitochondria, and caspase cascades in SCC25 cells.

Arginine Deiminase Enhances MCF-7 Cell Radiosensitivity by Inducing Changes in the Expression of Cell Cycle-related Proteins

  • Park, Hwan;Lee, Jun-Beom;Shim, Young-Jun;Shin, Yong-Jae;Jeong, Seong-Yun;Oh, Junseo;Park, Gil-Hong;Lee, Kee-Ho;Min, Bon-Hong
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.305-311
    • /
    • 2008
  • After successful clinical application, arginine deiminase (ADI) has been proposed to be a new cancer therapeutic. In the present study, we examined the effect of ADI in combination with ionizing radiation (IR) on MCF-7 cell growth and clonogenic cell death. Cell growth was inhibited by IR in a dose-dependent manner and ADI enhanced the radiosensitivity. ADI itself did not suppress the growth of MCF-7 cells due to the high level of expression of argininosuccinate synthetase (ASS), which convert citrulline, a product of arginine degradation by ADI, to arginine. Previously, it was suggested that ammonia, another product of arginine degradation by ADI, is the main cause of the growth inhibition of irradiated hepatoma cells contaminated with ADI-expressing mycoplasma [van Rijn et al. (2003)]. However, we found that ammonia is not the only factor that enhances radiosensitivity, as enhancement was also observed in the absence of ammonia. In order to identify the enhancing effect, levels of ASS and proteins related to the cell cycle were examined. ASS was unchanged by ADI plus IR, but p21 (a CDK inhibitor) was upregulated and c-Myc downregulated. These findings indicate that changes in the expressions of cell cycle proteins are involved in the enhancement of radiosensitivity by ADI. We suggest that ADI is a potential adjunct to cancer therapy.

Induction of Cell Cycle Arrest, Apoptosis, and Reducing the Expression of MCM Proteins in Human Lung Carcinoma A549 Cells by Cedrol, Isolated from Juniperus chinensis

  • Yun, Hee Jung;Jeoung, Da Jeoung;Jin, Soojung;Park, Jung-ha;Lee, Eun-Woo;Lee, Hyun-Tai;Choi, Yung Hyun;Kim, Byung Woo;Kwon, Hyun Ju
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.7
    • /
    • pp.918-926
    • /
    • 2022
  • Proteins related to DNA replication have been proposed as cancer biomarkers and targets for anticancer agents. Among them, minichromosome maintenance (MCM) proteins, often overexpressed in various cancer cells, are recognized both as notable biomarkers for cancer diagnosis and as targets for cancer treatment. Here, we investigated the activity of cedrol, a single compound isolated from Juniperus chinensis, in reducing the expression of MCM proteins in human lung carcinoma A549 cells. Remarkably, cedrol also strongly inhibited the expression of all other MCM protein family members in A549 cells. Moreover, cedrol treatment reduced cell viability in A549 cells, accompanied by cell cycle arrest at the G1 phase, and enhanced apoptosis. Taken together, this study broadens our understanding of how cedrol executes its anticancer activity while demonstrating that cedrol has potential application in the treatment of human lung cancer as an inhibitor of MCM proteins.

Mechanism Underlying NaF-Induced Apoptosis in Human Oral Squamous Cell Carcinoma

  • Hur, Young-Joo;Kim, Do-Kyun;Lee, Seung-Eun;Kim, In-Ryoung;Jeong, Na-Young;Kim, Ji-Young;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • v.35 no.2
    • /
    • pp.51-60
    • /
    • 2010
  • Few studies have evaluated the apoptosis-inducing efficacy of NaF on cancer cells in vitro but there has been no previous investigation of the apoptotic effects of NaF on human oral squamous cell carcinoma cells. In this study, we have investigated the mechanisms underlying the apoptotic response to NaF treatment in the YD9 human squamous cell carcinoma cell line. The viability of YD9 cells and their growth inhibition were assessed by MTT and clonogenic assays, respectively. Hoechst staining, DNA electrophoresis and TUNEL staining were conducted to detect apoptosis. YD9 cells were treated with NaF, and western blotting, immunocytochemistry, confocal microscopy, FACScan flow cytometry, and MMP and proteasome activity assays were performed sequentially. The NaF treatment resulted in a time- and dose-dependent decrease in YD9 cell viability, a dose-dependent inhibition of cell growth, and the induction of apoptotic cell death. The apoptotic response of these cells was manifested by nuclear condensation, DNA fragmentation, the reduction of MMP and proteasome activity, a decreased DNA content, the release of cytochrome c into the cytosol, the translocation of AIF and DFF40 (CAD) into the nucleus, a significant shift of the Bax/Bcl-2 ratio, and the activation of caspase-9, caspase-3, PARP, Lamin A/C and DFF45 (ICAD). Furthermore, NaF treatment resulted in the downregulation of G1 cell cyclerelated proteins, and upregulation of p53 and the Cdk inhibitor $p27^{KIP1}$. Taken collectively, our present findings demonstrate that NaF strongly inhibits YD9 cell proliferation by modulating the expression of G1 cell cycle-related proteins and inducing apoptosis via mitochondrial and caspase pathways.

The antitumor activities of Acanthopanax senticosus Harms(ASH) in human gastric cancer AGS cell lines (가시오가피 에탄올추출물의 AGS위암세포주에서 세포주기억제효과)

  • Lee, Sun-Dong;Ko, Seong-Gyu;Shin, Heon-Tae;Shin, Yong-Cheol
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.15 no.3
    • /
    • pp.127-140
    • /
    • 2011
  • Objectives : The research was conducted to confirm the effect of Acanthopanax senticosus harms(ASH) on the anti-tumor activities in AGS human gastric cancer cells. Methods : To examine the potential anti-tumor effect of ASH, we performed many experiments. After processing AGS cancer cells with varying concentrations 80% ethanol ASH extract, analyses by MTT, flow cytometer(FACS) and western blot were used. Results : AGS cancer cells showed decreased cell proliferation and increased contents of S phase when treated with ASH. Moreover, the Western blot experiment showed that ASH affected S phase cell cycle-related molecules(Cyclin A, p21 and p16) in AGS cells. ASH also inhibited EGFR-STAT3 pathway in AGS human gastric cancer cells. Conclusion : Based on these results, we observed that ASH arrested the cell cycle at S phase and inhibited the phosphorylation of EGFR and STAT3 proteins which reduce the cell cycle and the manifestation of the genes that are related to inhibiting cell growth in AGS cells. It can be concluded that ASH can be used in developing medicine for gastric cancer.

Gallic Acid Hindered Lung Cancer Progression by Inducing Cell Cycle Arrest and Apoptosis in A549 Lung Cancer Cells via PI3K/Akt Pathway

  • Ko, Eul-Bee;Jang, Yin-Gi;Kim, Cho-Won;Go, Ryeo-Eun;Lee, Hong Kyu;Choi, Kyung-Chul
    • Biomolecules & Therapeutics
    • /
    • v.30 no.2
    • /
    • pp.151-161
    • /
    • 2022
  • This study elucidates the anti-cancer potential of gallic acid (GA) as a promising therapeutic agent that exerts its effect by regulating the PI3K/Akt pathway. To prove our research rationale, we used diverse experimental methods such as cell viability assay, colony formation assay, tumor spheroid formation assay, cell cycle analysis, TUNEL assay, Western blot analysis, xenograft mouse model and histological analysis. Treatment with GA inhibited cell proliferation in dose-dependent manner as measured by cell viability assay at 48 h. GA and cisplatin (CDDP) also inhibited colony formation and tumor spheroid formation. In addition, GA and CDDP induced apoptosis, as determined by the distribution of early and late apoptotic cells and DNA fragmentation. Western blot analysis revealed that inhibition of the PI3K/Akt pathway induced upregulation of p53 (tumor suppressor protein), which in turn regulated cell cycle related proteins such as p21, p27, Cyclin D1 and E1, and intrinsic apoptotic proteins such as Bax, Bcl-2 and cleaved caspase-3. The anti-cancer effect of GA was further confirmed in an in vivo mouse model. Intraperitoneal injection with GA for 4 weeks in an A549-derived tumor xenograft model reduced the size of tumor mass. Injection of them downregulated the expression of proliferating cell nuclear antigen and p-Akt, but upregulated the expression of cleaved caspase-3 in tumor tissues. Taken together, these results indicated that GA hindered lung cancer progression by inducing cell cycle arrest and apoptosis, suggesting that GA would be a potential therapeutic agent against non-small cell lung cancer.

The Change of Cell-cycle Related Proteins and Tumor Suppressive Effect in Non-small Cell Lung Cancer Cell Line after Transfection of p16(MTS1) Gene (폐암세포에 p16 (MTS1) 유전자 주입후 암생성능의 변화 및 세포주기관련 단백질의 변동에 관한 연구)

  • Kim, Young-Whan;Kim, Jae-Yeol;Yoo, Chul-Gyu;Han, Sung-Koo;Shim, Young-Soo;Lee, Kye-Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.4
    • /
    • pp.796-805
    • /
    • 1997
  • Background : It is clear that deregulation of cell cycle progression is a hallmark of neoplastic transformation and genes involved in the $G_1$/S transition of the cell cycle are especially frequent targets for mutations in human cancers, including lung cancer. p16 gene product, one of the G1 cell-cycle related proteins, that is recently identified plays an important role in the negative regulation of the the kinase activity of the cyclin dependent kinase (cdk) enzymes. Therefore p16 gene is known to be an important tumor suppressor gene and is also called MTS1 (multiple tumor suppressor 1). No more oncogenes have been reported to be frequently related to multiple different malignancies than the alterations of p16 gene. Especially when it comes to non-small cell lung cancer, there was no expression of p16 in more than 70% of cell lines examined. And also it is speculated that p16 gene could exert a key role in the development of non-small cell lung cancer. This study was designed to evaluate whether p16 gene could be used as a candidate for gene therapy of non-small cell lung cancer. Methods : After the extraction of total RNA from normal fibroblast cell line and subsequent reverse transcriptase reaction and polymerase chain reaction, the amplified p16 cDNA was subcloned into eukaryotic expression plasmid vector, pRC-CMV. The constructed pRC-CMV-p16 was transfected into the NCI-H441 NSCLC cell line using lipofectin. The changes of G1 cell-cycle related proteins were investigated with Western blot analysis and immunoprecipitation after extraction of proteins from cell lysates and tumor suppressive effect was observed by clonogenic assay. Results : (1) p16(-) NCI-H441 cell line transfected with pRC-CMV-p16 showed the formation of p16 : cdk 4 complex and decreased phosphorylated Rb protein, while control cell line did not. (2) Clonogenic assay demonstrated that the number of colony formation was markedly decreased in p16(-) NCI-H441 cell line transfected with pRC-CMV-p16 than the control cell line. Conclusion : It is confirmed that the expression of p16 protein in p16 absent NSCLC cell line with the gene transfection leads to p16 : cdk4 complex formation, subsequent decrease of phosphorylated pRb protein and ultimately tumor suppressive effects. And also it provides the foundation for the application of p16 gene as a important candidate for the gene therapy of NSCLC.

  • PDF