• Title/Summary/Keyword: cell culture system

Search Result 945, Processing Time 0.025 seconds

New established cell lines from undifferentiated pleomorphic sarcoma for in vivo study

  • Eun-Young Lee;Young-Ho Kim;Md Abu Rayhan;Hyun Guy Kang;June Hyuk Kim;Jong Woong Park;Seog-Yun Park;So Hee Lee;Hye Jin You
    • BMB Reports
    • /
    • v.56 no.4
    • /
    • pp.258-264
    • /
    • 2023
  • As a high-grade soft-tissue sarcoma (STS), undifferentiated pleomorphic sarcoma (UPS) is highly recurrent and malignant. UPS is categorized as a tumor of uncertain differentiation and has few options for treatment due to its lack of targetable genetic alterations. There are also few cell lines that provide a representative model for UPS, leading to a dearth of experimental research. Here, we established and characterized new cell lines derived from two recurrent UPS tissues. Cells were obtained from UPS tissues by mincing, followed by extraction or dissociation using enzymes and culture in a standard culture environment. Cells were maintained for several months without artificial treatment, and some cell clones were found to be tumorigenic in an immunodeficient mouse model. Interestingly, some cells formed tumors in vivo when injected after aggregation in a non-adherent culture system for 24 h. The tissues from in vivo study and tissues from patients shared common histological characteristics. Pathways related to the cell cycle, such as DNA replication, were enriched in both cell clones. Pathways related to cell-cell adhesion and cell-cell signaling were also enriched, suggesting a role of the mesenchymal-to-epithelial transition for tumorigenicity in vivo. These new UPS cell lines may facilitate research to identify therapeutic strategies for UPS.

Effect of S-Allyl Cysteine(SAC) on the Proliferation of Umbilical Cord Blood(UCB)-derived Mesenchymal Stem Cells(MSCs) (S-Allyl Cysteine(SAC)이 제대혈 유래 중간엽 줄기세포 증식에 미치는 영향)

  • Park, Ran-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.22 no.2
    • /
    • pp.313-319
    • /
    • 2009
  • To improve the growth of human mesenchymal stem cells(hMSCs) under general cell culture conditions(20% $O_2$ and 5% $CO_2$), we examined the effect of s-allylcysteine(SAC), which is known as an antioxidant and the main component of aged-garlic extract, on hydrogen peroxide-induced cellular stress in hMSCs. We found that SAC blocked hydrogen peroxideinduced cell death and cellular apoptosis, but that SAC did not improve the growth of hMSCs during short-term culture. To evaluate the protective effect of SAC, we examined the endogenous expression of the antioxidant enzymes catalase (CAT), superoxide dismutase(SOD), and glutathione peroxidase(Gpx) in hMSCs. Hydrogen peroxide was found to downregulate the expression of CAT, SOD, and Gpx at the protein level. However, in the pre-treatment group of SAC, SAC inhibited the hydrogen peroxide-induced down-regulation of CAT, SOD, and Gpx. Unfortunately, treatment with SAC alone did not induce the up-regulation of antioxidant enzymes and the cell proliferation of hMSCs. Surprisingly, SAC improved cell growth in a single cell level culture of hMSCs. These results indicate that SAC may be involved in the preservation of the self-renewal capacity of hMSCs. Taken together, SAC improves the proliferation of hMSCs via inhibition of oxidative-stress-induced cell apoptosis through regulation of antioxidant enzymes. In conclusion, SAC may be an indispensable component in an in vitro culture system of human MSCs for maintaining self-renewal and multipotent characterization of human MSCs.

Enhanced Anthocyanin Accumulation by UV-B and JA Treatment in Cell Suspension Culture System of Grope (Vitis vinifera L.)

  • Won yong Song;In, Jun-Gyo;Lim, Yong-Pyo;Park, Kwan-Sam
    • Journal of Plant Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.117-121
    • /
    • 1999
  • Effects of jasmonic acid treatment, UV-B and white light treatment on the anthocyanin biosynthesis and cell growth were investigated using the cell suspension culture system of grape (Vitis vinifera L.). Cell growth was not affected by white light irradiation, while it was remarkably suppressed by UV-B irradiation from 8 to 32 h. Anthocyanin accumulation dramatically increased after 16 h from irradiation of UV-B. Simultaneous treatment of jasmonic acid and UV-B increased anthocyanin accumulation by 10-fold. The cell division was restored when anthocyanin was abundantly accumulated after 32 h from UV-B irradiation. Optimum concentration of jasmonic acid was found to be 5 uM for maximum accumulation of anthocyanin. Application of jasmonic acid to grape suspension cells rapidly induced the expression of CHS gene after 2 h from treatment and showed maximum level at 32 h. Simultaneous treatment of jasmonic acid and light also induced CHS gene expression after 2 h, but the maximum level of CHS transcript was observed at 16 h with white light and 8 h with UV-B exposure. The synergistical effects could be explained by the defense mechanism that UV irradiation is mediated in part by alterations in JA and its signaling pathway.

  • PDF

Neurotoxicity Assessment of Methamphetamine and Cadmium Using Cultured Neuronal Cells of Long-Evans Rats (신경세포 배양법을 이용한 methamphetamine과 cadmium의 신경독성 평가)

  • Cho, Dae-Hyun;Kim, Jun-Gyon;Jeong, Yong;Lee, Bong-Hun;Kim, Eun-Youb;Kim, Jeong-Goo;Cho, Tai-Soon;Kim, Jin-Suk;Moon, Hwa-Hwey
    • Toxicological Research
    • /
    • v.12 no.1
    • /
    • pp.69-79
    • /
    • 1996
  • Primary culture of cerebellar neuronal cells derived from 8-day old Long-Evans rats was used. Pure granule cells, astrocytes or mixed cells culture systems were prepared. These cells were differentiated and developed synaptic connections. And the astrocytes were identified by immunostaining with glial fibrillary acidic protein (GFAP). Methamphetamine (MAP), which acts on dopaminergic system and cadmium (Cd), a toxic heavy metal, were applied and biochemical assays and electrophysiological studies were performed. $LC_50$ values estimated by MTT assay of MAP and Cd were 3 mM and 2$\mu M$ respectively. Cells were treated with 1 mM or 2 mM MAP and 1$\mu M$ $CdCl_2$ for 48 hour, and the incubation media were analyzed for the content of released LDH. MAP (2 mM) and Cd significantly increased the LDH release. Cell viability was decreased in both groups and some cytopathological changes like cell swelling or vacuolization were seen. The cerebellar granule cells were used for measuring membrane currents using whole-cell clamp technique. Sodium and potassium currents were not affected by MAP neither Cd, but calcium current was significantly reduced by Cd but not affected by MAP. Therefore, in vitro neurotoxicity test system using neuronaI cells and astrocytes cultures were established and can be used in screening of potential neurotoxic chemicals.

  • PDF

Mxi1 influences cyst formation in three-dimensional cell culture

  • Yook, Yeon-Joo;Yoo, Kyung-Hyun;Song, Seon-Ah;Seo, Min-Ji;Ko, Je-Yeong;Kim, Bo-Hye;Lee, Eun-Ji;Chang, Eun-Sun;Woo, Yu-Mi;Park, Jong-Hoon
    • BMB Reports
    • /
    • v.45 no.3
    • /
    • pp.189-193
    • /
    • 2012
  • Cyst formation is a major characteristic of ADPKD and is caused by the abnormal proliferation of epithelial cells. Renal cyst formation disrupts renal function and induces diverse complications. The mechanism of cyst formation is unclear. mIMCD-3 cells were established to develop simple epithelial cell cysts in 3-D culture. We confirmed previously that Mxi1 plays a role in cyst formation in Mxi1-deficient mice. Cysts in Mxi1 transfectanted cells were showed by collagen or mebiol gels in 3-D cell culture system. Causative genes of ADPKD were measured by q RT-PCR. Herein, Mxi1 transfectants rarely formed a simple epithelial cyst and induced cell death. Overexpression of Mxi1 resulted in a decrease in the PKD1, PKD2 and c-myc mRNA relating to the pathway of cyst formation. These data indicate that Mxi1 influences cyst formation of mIMCD-3 cells in 3-D culture and that Mxi1 may control the mechanism of renal cyst formation.

Comparison of Bio-ethanol Productivity Using Food Wastes by Various Culture Modes (에탄올 발효방법에 따른 음식물류 폐기물의 바이오에탄올 생산성 비교)

  • Kang, Hee-Jeong;Li, Hong-Xian;Kim, Yong-Jin;Kim, Seong-Jun
    • KSBB Journal
    • /
    • v.25 no.5
    • /
    • pp.471-477
    • /
    • 2010
  • In order to improve bio-ethanol productivity by various cultivation methods in this paper, the culture modes using food wastes, such as batch culture, high-cell-density fermentation, SSF (simultaneous saccharification and fermentation) by fill & draw, continuous culture by fill & draw were performed and their productivities were compared. SSFs by fill & draw were performed by continuous decompression using 1 L evaporator system, and by 10 L bioreactor without decompression. In addition, the continuous cultures by fill & draw mode using SFW (saccharafied food wastes) medium were performed by changes of 40% culture broth with intervals of 12 h (0.03 $h^{-1}$), 6 h (0.07 $h^{-1}$), 3 h (0.13 $h^{-1}$). Consequently, productivities of bio-ethanol were 2.52 g/L-h and 1.30 g/L-h in batch culture and high- cell-density fermentation, respectively. The productivities of SSF by fill & draw showed 2.24 g/L-h and 2.03 g/L-h in continuous decompression with 1 L evaporator and 10 L bioreactor without decompression, respectively. Also, the productivities in continuous culture by fill & draw modes showed 2.02 g/L-h, 4.07 g/L-h and 6.25 g/L-h by medium change with intervals of 12 h, 6 h, and 3 h, respectively. In conclusion, the highest ethanol productivity was obtained in the continuous culture mode by fill & draw with dilution rate of 0.13 $h^{-1}$.

Systems for Production of Calves from Cultured Bovine Embryonic Cells (우 수정란의 배양세포들로부터 송아지 생산을 위한 체계)

  • ;N. L. First
    • Korean Journal of Animal Reproduction
    • /
    • v.18 no.4
    • /
    • pp.299-307
    • /
    • 1995
  • The goal of cell stem cell technology is to produce a viable and genetically normal animal. To achieve this goal various laboratories have followed 2 different pathways beginning with either the culture of 1) single or pooled ICMs grown with or without a feeder layer or 2) single or pooled 16-20 cell stage embryos grown with a feeder layer. Also, thus far embryonic cell cultures or lines have been established by several methods including loose suspension culture for short-term cultures and more commonly murine or bovine fibroblast feeder layers for long-term culture. Pluripotent lines have been derived from 16-cell through blastocyst inner cell mass stages. The efficiency of establishing cell lines and cell proliferation apper to be affected by the number of cells or embryos starting the line. Most attempts to produce offspring from long term STO cell feeder layer cultured ICM or morulae derived ES cells have resulted in pregnancy failure in the first trimester when ES cells were used in cuclear transfer or have failed to retain ES cells in the progeny produced by chimerization. The exception is 1 chimeric fetus from use of morula ES cells in the chimerization with early embryonic cells. There is much to be learned yet about ES cell culture requirements for maintenance of totipotency. If bovine ES cell lines loose imprinting pattern and totipotency with long-term culture and passage as suggested for mouse ES cells, we may be limited to the use of short-term cultures for multiplication of embryos and efficient production of transgenic animals. No bovine ES cell system has yet met all of the criteria indicated for a totipotent ES cell line.

  • PDF

Development of Culture System for Masspropagation and Acclimatization of Tissue Cultured Plantlets (유식물체 증식.순화용 배양시스템 개발)

  • Han, K.S.;Heo, J.W.;Kim, S.C.;Lee, Y.B.;Kim, S.C.;Im, D.H.;Choi, H.G.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.2 s.121
    • /
    • pp.109-114
    • /
    • 2007
  • In mass production of seed-potato plantlets, the processes for in vitro propagation and ex vitro acclimatization with a high cost should be improved by a culture system with environmental control using scaled-up culture vessels. The experiment was conducted to design a hydroponic culture system for enhancement of growth and development of seed-potato (Solanum tuberosum) plantlets cultured under photoautotrophic (without sugar in culture medium) conditions with controlled light intensity and ventilation rate. The culture system was consisted of scaled-up culture vessels, ventilation pipes, a multi-cell tray and an environmental control system (ECS) for optimum controlling in temperature, light intensity, ventilation rate, and culture-medium supply. Growth and development of the plantlets was significantly increased under the ECS compared with a conventional culture system (CCS) of photomixotrophic culture (with sugar in culture medium) using small scale vessels. For 21 days, leaf area of the plantlets was expanded more than 2 times, and number of internodes also approximately 4 times greate. under the ECS. In addition, the photoautotrophic growth in sweetpotato (Ipomoea batatas) and chrysanthemum (Chrysanthemum morifolium) plantlets was greater more than 2 times compared with the CCS.

High-efficient Expression of Porcine IL-2 with Recombinant Baculovirus Infected Silkworm, Bombyx mori

  • Inumaru, Shigeki;KokuHo, Takehiro;Yada, Takashi;Kiuchi, Makoto;Miyazawa, Mitsusuhiro
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.2
    • /
    • pp.146-149
    • /
    • 2000
  • Biologically active porcine Interleukin-2(poIL-2) was produced from in vitro and in viva baculovirus expression system, namely the Autographa californica nuclear polyhedrosis virus (ACNPV)-cell culture system and the Hybrid nucler polthedrosis virus (HyNPV)-sillkworm larva system. The concentration of the recombinant poIL-2(rpoIL-2) in the larvae hemolymph was 1 to 3 mg/mL, which was about 7 to 20 times those of the cell culture systems. The level of this expression efficiency is equal to that with transgenic livestock, secretion products in milk.

  • PDF

A newly developed consensus polymerase chain reaction to detect Mycoplasma species using 16S ribosomal RNA gene

  • Hong, Sunhwa;Park, Sang-Ho;Chung, Yung-Ho;Kim, Okjin
    • Korean Journal of Veterinary Service
    • /
    • v.35 no.4
    • /
    • pp.289-294
    • /
    • 2012
  • Mycoplasmas are highly fastidious bacteria, difficult to culture and slow growing. Infections with Mycoplasma species can cause a variety of problems in living organisms and in vitro cell cultures. In this study, we investigated the usefulness of a genus-specific consensus PCR analysis method to detect Mycoplasma species. The developed consensus primer pairs MycoF and MycoR were designed specifically to amplify the 16S ribosomal RNA gene (rRNA) of Mycoplasma species by the optimized PCR system. The developed consensus PCR system effectively amplified 215 bp of Mycoplasma genus-specific region of 16S rRNA. In conclusion, we recommend this consensus PCR for monitoring Mycoplasma species in animals, human and cell culture system.