• 제목/요약/키워드: cell culture model

검색결과 383건 처리시간 0.026초

Contraction Behavior of Collagen Gel and Fibroblats Activity in Dermal Equivalent Model

  • Yang, Eun-Kyung;Lee, Doo-Hoon;Park, Sue-Nie;Choe, Tae-Boo;Park, Jung-Keug
    • Journal of Microbiology and Biotechnology
    • /
    • 제7권4호
    • /
    • pp.267-271
    • /
    • 1997
  • We developed a dermal equivalent (DE) which was engineered using human dermal fibroblasts and a matrix of collagen gel. The in vitro construction of the DE was accomplished by casting a porcine collagen type I solution plus concentrated medium with isolated and cultured fibroblasts. These constructs were attached to culture dishes or left floating in culture medium. Contraction of attached gels results in decreased gel thickness without a change in gel diameter, and contraction of floating gels results in decreased gel thickness and diameter. After contraction, there was no increase in cell number in floating gels, but cells in attached gels began to increase after about 4 days of the lag phase in cell growth curve. At this lag phase, addition of fibroblast growth factor (FGF) at a concentration of $0.1{\mu}$/ml promoted cell proliferation in the attached collagen gels, but no effect in floating gels. These results indicate that the method of contraction had an influence on the extracellular matrix (ECM) organization, and this influenced not only cell growth but also fibroblast responsiveness to FGF. This suggests that attached collagen gel is more suitable as a dermal equivalent than the floating gel. And the final contracted area of attached gel is much larger than that of the floating gel since floating gel is contracted in all directions but attached gel is contracted only vertically.

  • PDF

Effects of Mutagenesis for Glycosylation Sites of Recombinant Human EPO During Production from Cultured CHO Cell

  • Lee, Hyun-Gi;Seong, Hwan-Hoo;Im, Seok-Ki;Chung, Hee-Kyoung;Lee, Poongyeon;Lee, Yeun-Kun;Min, Kwan-Sik;Chang, Won-Kyoung;Lee, Hoon-Taek
    • 한국수정란이식학회:학술대회논문집
    • /
    • 한국수정란이식학회 2002년도 국제심포지엄
    • /
    • pp.97-97
    • /
    • 2002
  • Human eryhropoietin (EPO) is acidic glycoprotein hormone that plays key role in hematopoiesis by facilitating differentiation of erythrocyte and formation of hemoglobin (Hb) and is used for the treatment of anemia. Human EPO is consist of 166 amino acids which is modified by three N-glycosylations (24, 38, 83) and single O-glycosylation (126). N-glycosylation is reported to be related to the cellular secretion and activity of EPO. In this study, we examined effects of mutagenesis in glycosylation site of recombinat hEPO for the cellular secretion during production from cultured CHO cell. We produced rhEpo which was cloned by PCR from human liver cDNA (TaKaRa) in cultured CHO cell. Using supernatant of the culture, ELISA assay and western analysis were performed. To estimate biological activity, 20IU of rhuEpo was subcutaneously injected into four ICR mice. After 8 days, HCT level was increased average 13 per cent, RBC was increased ca. 2${\times}$10$\^$6//${\mu}\ell$. In disease model Rat (anemia c-kit, WSRC-WS/WS), HCT was increased ca. 12%, RBC was increased ca. 1.6${\times}$10$\^$6//${\mu}\ell$. These results suggests that rhEpo we produced has biological activity. To remove glycosylation site by substituting 24, 38, 83, and 126th asparagine (or serine) with glutamic acid, overlapping -extension site-directed mutagenesis was performed. To add novel glycosylation sites, 69, 105th leucine was mutated to asparagine. Mutant EPO construct was transfected into CHO cell. Supernatant of the cell culture was analyzed using ELISA assay with monoclonal anti-EPO antibody (Medac, Germany). Since, several reports for mutagenesis of glycosylation sites showed case-by-case results, we examined both transient expression and stable expression. Addition of novel glycosylation sites resulted no secretion while deletion mutants had little effect except some double deletion mutants (24/83 and 38/83) and triple mutant. We suggest that not single but combination of glycosyl group affect secretion of EPO.

  • PDF

이중배양법에 따른 Lactococcus lactis의 아토피 유발인자 억제 효과 증대 (Double-culture Method Enhances the in Vitro Inhibition of Atopy-inducing Factors by Lactococcus lactis)

  • 조유란;강상모;김현표
    • 생명과학회지
    • /
    • 제25권7호
    • /
    • pp.810-818
    • /
    • 2015
  • 유산균이 활성화된 비만세포에서 발현하는 IL-4와 IL-13을 조절할 수 있는지를 분석하였고, GATA-1, GATA-2, NF-AT1, NF-AT2, NF-κB p65 전사인자의 활성을 억제하는지를 실험적으로 규명하였다. 이전 연구에서 T cell에서 CD4+/CD25+/foxp3+ 증가를 실험하여 항아토피 기능성이 있는 유산균을 탐색하였고, Staphylococcus aureus에 대한 항균력을 증가시키는 유산균의 이중배양법을 확인하였다. 여기서는 RBL-2H3 비만세포를 이용하여 이 배양법으로 배양한 유산균이 아토피 피부염의 원인이 되는 allergy 염증반응에서 얼마나 억제능을 갖는지 알아보았다. 그 결과 Lc. lactis culture with medium containing Lb. plantarum supernatants > Lc. lactis > Lc. lactis culture broth with medium containing Lb. plantarum culture broth > Lb. plantarum의 순으로 나타났다. 이 cell 수준(level of mast cells)에서의 순서는 이전 연구의 level of microorganisms (anti-S. aureus)에서의 아토피 유발인자 억제능 순서와 같다. 따라서 세포수준에서도 Lb. plantarum 배양상층액을 첨가한 배지에 Lc. lactis 배양한 경우가 활성화된 비만세포의 allergy 반응으로의 분화 및 활성을 가장 잘 억제하고 관련 유전자 발현을 선택적으로 조절하는 anti-allergy 효과를 나타낸다고 사료된다.

Walnut phenolic extracts reduce telomere length and telomerase activity in a colon cancer stem cell model

  • Shin, Phil-Kyung;Zoh, Yoonchae;Choi, Jina;Kim, Myung-Sunny;Kim, Yuri;Choi, Sang-Woon
    • Nutrition Research and Practice
    • /
    • 제13권1호
    • /
    • pp.58-63
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Telomeres are located at the chromosomal ends and progressively shortened during each cell cycle. Telomerase, which is regulated by hTERT and c-MYC, maintains telomeric DNA sequences. Especially, telomerase is active in cancer and stem cells to maintain telomere length for replicative immortality. Recently we reported that walnut phenolic extract (WPE) can reduce cell viability in a colon cancer stem cell (CSC) model. We, therefore, investigated the effect of WPE on telomere maintenance in the same model. MATERIALS AND METHODS: $CD133^+CD44^+$ cells from HCT116, a human colon cancer cell line, were sorted by Fluorescence-activated cell sorting (FACS) and treated with WPE at the concentrations of 0, 10, 20, and $40{\mu}g/mL$ for 6 days. Telomere lengths were assessed by quantitative real-time PCR (qRT-PCR) using telomere specific primers and DNA extracted from the cells, which was further adjusted with single-copy gene and reference DNA ($ddC_t$). Telomerase activity was also measured by qRT-PCR after incubating the PCR mixture with cell protein extracts, which was adjusted with reference DNA ($dC_t$). Transcriptions of hTERT and c-MYC were determined using conventional RT-PCR. RESULTS: Telomere length of WPE-treated cells was significantly decreased in a dose-dependent manner ($5.16{\pm}0.13$ at $0{\mu}g/mL$, $4.79{\pm}0.12$ at $10{\mu}g/mL$, $3.24{\pm}0.08$ at $20{\mu}g/mL$ and $3.99{\pm}0.09$ at $40{\mu}g/mL$; P = 0.0276). Telomerase activities concurrently decreased with telomere length ($1.47{\pm}0.04$, $1.09{\pm}0.01$, $0.76{\pm}0.08$, and $0.88{\pm}0.06$; P = 0.0067). There was a positive correlation between telomere length and telomerase activity (r = 0.9090; P < 0.0001). Transcriptions of both hTERT and c-MYC were also significantly decreased in the same manner. CONCLUSION: In the present cell culture model, WPE reduced telomere maintenance, which may provide a mechanistic link to the effect of walnuts on the viability of colon CSCs.

HaCaT Keratinocytes and Primary Epidermal Keratinocytes Have Different Transcriptional Profiles of Cornified Envelope-Associated Genes to T Helper Cell Cytokines

  • Seo, Min-Duk;Kang, Tae-Jin;Lee, Chang-Hoon;Lee, Ai-Young;Noh, Min-Soo
    • Biomolecules & Therapeutics
    • /
    • 제20권2호
    • /
    • pp.171-176
    • /
    • 2012
  • HaCaT cells are the immortalized human keratinocytes and have been extensively used to study the epidermal homeostasis and its pathophysiology. T helper cells play a role in various chronic dermatological conditions and they can affect skin barrier homeostasis. To evaluate whether HaCaT cells can be used as a model cell system to study abnormal skin barrier development in various dermatologic diseases, we analyzed the gene expression profile of epidermal differentiation markers of HaCaT cells in response to major T helper (Th) cell cytokines, such as $IFN{\gamma}$, IL-4, IL-17A and IL-22. The gene transcriptional profile of cornified envelope-associated proteins, such as filaggrin, loricrin, involucrin and keratin 10 (KRT10), in HaCaT cells was generally different from that in normal human keratinocytes (NHKs). This suggests that HaCaT cells have a limitation as a model system to study the pathophysiological mechanism associated with the Th cell cytokine-dependent changes in cornified envelope-associated proteins which are essential for normal skin barrier development. In contrast, the gene transcription profile change of human ${\beta}2$-defensin (HBD2) in response to $IFN{\gamma}$, IL-4 or IL-17A in HaCaT cells was consistent with the expression pattern of NHKs. $IFN{\gamma}$ also up-regulated transglutaminase 2 (TGM2) gene transcription in both HaCaT cells and NHKs. As an alternative cell culture system for NHKs, HaCaT cells can be used to study molecular mechanisms associated with abnormal HBD2 and TGM2 expression in response to $IFN{\gamma}$, IL-4 or IL-17A.

Methanol Extract of Cassia mimosoides var. nomame and Its Ethyl Acetate Fraction Attenuate Brain Damage by Inhibition of Apoptosis in a Rat Model of Ischemia-Reperfusion

  • Kim, Ki-Hong;Lee, Jong-Won
    • Preventive Nutrition and Food Science
    • /
    • 제15권4호
    • /
    • pp.255-261
    • /
    • 2010
  • Ischemic stroke, a major cause of death and disability worldwide, is caused by occlusion of cerebral arteries that, coupled with or without reperfusion, results in prolonged ischemia (hypoxia and hypoglycemia) and, ultimately, brain damage. In this study, we examined whether methanol extract of the whole plant of Cassia mimosoides var. nomame Makino that grows naturally in Korea, as well as Japan and China, and some of its fractions obtained by partitioning with organic solvents could protect human hepatocellular carcinoma cells (HepG2) under hypoxic condition by inhibiting apoptosis. We also investigated if these extracts could attenuate brain damage in a rat model of 2 hr of ischemia, generated by middle cerebral artery occlusion, and 22 hr of reperfusion. The whole extract ($100{\mu}g$/mL) maintained the cell number at more than half of that initially plated, even after 24 hr of cell culture under hypoxic condition (3% $O_2$). In the absence of the whole extract, almost all of the cells were dead by this time point. This improvement of cell viability came from a delay of apoptosis, which was confirmed by observing the timing of the formation of a DNA ladder when assessed by gel electrophoresis. Of fractions soluble in hexane, ethyl acetate (EA), butanol and water, EA extracts were selected for the animal experiments, as they improved cell viability at the lowest concentration ($10{\mu}g$/mL). The whole extract (200 mg/kg) and EA extract (10 and 20 mg/kg) significantly reduced infarct size, a measure of brain damage, by 34.7, 33.8 and 45.2.0%, respectively, when assessed by 2,3,5-triphenyl tetrazolium chloride staining. The results suggest that intake of Cassia mimosoides var. nomame Makino might be beneficial for preventing ischemic stroke through inhibition of brain cell apoptosis.

3D-culture models as drug-testing platforms in canine lymphoma and their cross talk with lymph node-derived stromal cells

  • An, Ju-Hyun;Song, Woo-Jin;Li, Qiang;Bhang, Dong-Ha;Youn, Hwa-Young
    • Journal of Veterinary Science
    • /
    • 제22권3호
    • /
    • pp.25.1-25.16
    • /
    • 2021
  • Background: Malignant lymphoma is the most common hematopoietic malignancy in dogs, and relapse is frequently seen despite aggressive initial treatment. In order for the treatment of these recurrent lymphomas in dogs to be effective, it is important to choose a personalized and sensitive anticancer agent. To provide a reliable tool for drug development and for personalized cancer therapy, it is critical to maintain key characteristics of the original tumor. Objectives: In this study, we established a model of hybrid tumor/stromal spheroids and investigated the association between canine lymphoma cell line (GL-1) and canine lymph node (LN)-derived stromal cells (SCs). Methods: A hybrid spheroid model consisting of GL-1 cells and LN-derived SC was created using ultra low attachment plate. The relationship between SCs and tumor cells (TCs) was investigated using a coculture system. Results: TCs cocultured with SCs were found to have significantly upregulated multidrug resistance genes, such as P-qp, MRP1, and BCRP, compared with TC monocultures. Additionally, it was revealed that coculture with SCs reduced doxorubicin-induced apoptosis and G2/M cell cycle arrest of GL-1 cells. Conclusions: SCs upregulated multidrug resistance genes in TCs and influenced apoptosis and the cell cycle of TCs in the presence of anticancer drugs. This study revealed that understanding the interaction between the tumor microenvironment and TCs is essential in designing experimental approaches to personalized medicine and to predict the effect of drugs.

Design and Development of a Public Waste Battery Diagnostic Device

  • Kim, Sang-Bum;Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • 제10권3호
    • /
    • pp.281-286
    • /
    • 2022
  • In this study, design of an intuitive internal resistance diagnostic device is to diagnose the residual capacity and aging of the battery regardless of the model and the internal protocol of the waste battery through the method of measuring the internal resistance of a waste battery. In this paper, charging and discharging were continuously performed with 2A charging and 5A discharging in order to secure data on impedance changes that may occur in the charging and discharging process of various methods. As a result of the final experiment, it was confirmed that the impedance change occurred during charging and discharging, and the amount of change increased as the charging/discharging C-rate increased. In addition, it was confirmed that the waste battery aged or abnormal cell had a large change in the impedance value.

A 3D "In Vitro" Model to Study Hyaluronan Effect in Nasal Epithelial Cell Line Exposed to Double-Stranded RNA Poly(I:C)

  • Albano, Giusy Daniela;Bonanno, Anna;Giacomazza, Daniela;Cavalieri, Luca;Sammarco, Martina;Ingrassia, Eleonora;Gagliardo, Rosalia;Riccobono, Loredana;Moscato, Monica;Anzalone, Giulia;Montalbano, Angela Marina;Profita, Mirella
    • Biomolecules & Therapeutics
    • /
    • 제28권3호
    • /
    • pp.272-281
    • /
    • 2020
  • Environmental agents, including viral and bacterial infectious agents, are involved in the alteration of physicochemical and biological parameters in the nasal epithelium. Hyaluronan (HA) has an important role in the regulation of tissue healing properties. High molecular weight HA (HMW-HA) shows greater anti-inflammatory responses than medium molecular weight HA (MMW-HA) and low molecular weight HA (LMW-HA). We investigated the effect of HMW-HA, MMW-HA and LMW-HA on the regulation of physicochemical and biological parameters in an "in vitro" model that might mimic viral infections of the nasal epithelium. Human nasal epithelial cell line RPMI2650 was stimulated with double-stranded RNA (dsRNA) Poly(I:C) for 5 days in air-liquid-interface (ALI) culture (3D model of airway tissue). dsRNA Poly(I:C) treatment significantly decreased transepithelial electrical resistance (TEER) in the stratified nasal epithelium of RPMI2650 and increased pH values, rheological parameters (elastic G' and viscous G''), and Muc5AC and Muc5B production in the apical wash of ALI culture of RPMI2650 in comparison to untreated cells. RPMI2650 treated with dsRNA Poly(I:C) in the presence of HMW-HA showed lower pH values, Muc5AC and Muc5B production, and rheological parameters, as well as increased TEER values in ALI culture, compared to cells treated with Poly(I:C) alone or pretreated with LMW-HA and MMW-HA. Our 3D "in vitro" model of epithelium suggests that HMW-HA might be a coadjuvant in the pharmacological treatment of viral infections, allowing for the control of some physicochemical and biological properties affecting the epithelial barrier of the nose during infection.

Real time optimization of fed-batch culture of recombinant yeast

  • 나정걸;김현한;장용근;정봉현
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.81-84
    • /
    • 2001
  • A real time optimization algorithm for fed-batch cultures of recombinant yeast to determine the optimal substrate feed rate profile has been developed. Its development involved four key steps: (1) development of reliable adaptive model. (2) development of optimization algorithm. (3) design of on-line model update algorithm to be incorporated into the optimization algorithm and (4) experimental validation. A recombinant Saccharomyces cerevisiae producing human parathyroid hormone (hPTH) was chosen as the model strain. It was found to be very successful in maintaining cell growth and galactose consumption at leigh levels, thus resulting in significant improvements in the productivity (up to 2.1 times) and intact hPTH concentration (up to 1.5 times) compared with the case of an intermittent glucose and galactose, or galactose feeding.

  • PDF