• Title/Summary/Keyword: cell culture analysis

Search Result 862, Processing Time 0.026 seconds

회전식 여과기를 이용한 고농도 동물세포배양의 수학적 해석 (Mathematical Analysis of a High Density Animal Cell Culture with a Spin-Filter)

  • 박흥우
    • KSBB Journal
    • /
    • 제9권2호
    • /
    • pp.230-237
    • /
    • 1994
  • 회전식 여과기는 일종의 분리기로서 동물세포의 연속배양에 이용되어 높은 세포농도와 그와 비례한 높은 생산성을 가져다 준다. 회전식 여과기를 이용한 세포배양은 여러 인자들에 의해 세포농도의 변화가 결정되는데 이를 수학적으로 modeling하고 수치 모사와 sensitivity analysis를 통하여 조사하였다. 고농도 배양시 암모니아의 축적은 세포 성장을 크게 둔화시키고 최대세포농도도 따라서 낮게 된다. 운전 인자 중 세포유치율은 세포 성장속도와 최대세포농도의 크기에 가장 큰 영향을 끼침이 밝혀졌다. 비배지공급속도는 세포농도의 변화에 거의 영향을 끼치지 않으며 배지의 연속식공급과 계단식공급은 세포성장에 큰 차이를 보이지 않는다.

  • PDF

천남성(天南星)이 HeLa Cell의 증식억제(增殖抑制)와 apoptosis에 미치는 영향(影響) (Inhibitory effects of Arisaematis rhizoma(天南星) on cell proliferation in HeLa cell)

  • 조정훈;장준복;이경섭;배우진
    • 대한한방부인과학회지
    • /
    • 제19권3호
    • /
    • pp.25-40
    • /
    • 2006
  • Purpose : This study was undertaken to evaluate the inhibitory effects of Arisaematis rhizoma on the cell proliferation in HeLa cells. Methods : The cultured cell after treatment in the different duration in 24, 48, 72 hours with solution of 1%. 5%, 10% Arisaematis rhizoma was quantified by trypan blue exclusin method. The control group was treated with 2% FBS in the different duration in 24, 48, 72 hours. We examined DNA of activated caspase by FACS analysis, caspase-3 activity, DNA fragmentation by DNA laddering, activity of HeLa Cells by the XTT assay, activity of MAP kinase by RT-PCR analysis. Results : After 72 hours culture, the growth activities of 1%, 5%, 10% Arisaematis rhizoma-treated Hela cell were significantly reduced with control group, respectively. After 24 hours culture, the ratio of cells showing caspase activity by FACS analysis were increased in 1%, 5%, 10% Arisaematis rhizoma-treated Hela cell. It were also increased in 48 hours culture of 10% and 72 hours culture of 5%, 10% Arisaematis rhizoma-treated Hela cell. In 24, 48 and 72 hours culture, DNA fragmentations of 5%, 10% Arisaematis rhizoma-treated Hela cell were obviously observed. These results meaned that Arisaematis rhizoma induces apoptosis of HeLa cells. It was supported by increased caspase-3 activity and decreased MAP kinase activity according to time periods and concentrations of Arisaematis rhizoma solution. Conclusion : The study shows that Arisaematis rhizoma has inhibitory effect on cell proliferation and induction capacity of apoptosis of human cevical carcinoma cell line, HeLa cells, in vitro. These results suggest that Arisaematis rhizoma should be useful for treatment of human cevical carcinoma.

  • PDF

Production of Useful Proteins by Plant Cell Culture

  • Kwon, Tae-Ho;Kim, Dae-Hyun;Jang, Yong-Suk;Yang, Moon-Sik
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1999년도 제13회 식물생명공학심포지움 New Approaches to Understand Gene Function in Plants and Application to Plant Biotechnology
    • /
    • pp.45-49
    • /
    • 1999
  • Plant cell culture is emerging to express bioactive foreign proteins because it has several advantages in that it is safe, economical, genetically stable and eukaryotic expression system comparing with other expression systems. However several limitations such as slow growth rate, low expression level and lack of well established down stream process need to be answered. As a preliminary approach to produce the immunologically interested molecules through the plant cell culture, we tested if granulocyte-macrophage colony stimulating factors (GM-CSFs) from both murine (mGM-CSF) and human (hGM-CSF) are produced as a biologically active form through plant cell culture. The murine and human GM-CSF genes were cloned into the plant expression vector, pBI121, and Ti-plasmid mediated transformation of tobacco leaves was conducted using Agrobacterium tumefaciens harboring both recombinant GM-CSF (rGM-CSF) genes. Cell suspension culture was established from the leaf-derived calli of transgenic tobacco plant. Northern blot analysis indicated the expression of the introduced mGM-CSF gene in both transgenic plant and cell suspension cultures. In addition, the biological activities of both murine and human GM-CSF from plant cell culture were confirmed by measuring the proliferation of the GM-CSF dependent FDC-PI and TF-1 cells, respectively.

  • PDF

북한산 국립공원의 식생군집형에 대하여

  • 송호경;이근복
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1985년도 워크샵 및 심포지엄 북한산국립공원의 식생
    • /
    • pp.23-33
    • /
    • 1985
  • Plant cell culture is emerging to express bioactive foreign proteins because it has several advantages in that it is safe, economical, genetically stable and eukaryotic expression system comparing with other expression systems. However several limitations such as slow growth rate, low expression level and lack of well established down stream process need to be answered. As a preliminary approach to produce the immunologically interested molecules through the plant cell culture, we tested if granulocyte-macrophage colony stimulating factors (GM-CSFs) from both murine (mGM-CSF) and human (hGM-CSF) are produced as a biologically active form through plant cell culture. The murine and human GM-CSF genes were cloned into the plant expression vector, pBI121, and Ti-plasmid mediated transformation of tobacco leaves was conducted using Agrobacterium tumefaciens harboring both recombinant GM-CSF (rGM-CSF) genes. Cell suspension culture was established from the leaf-derived calli of transgenic tobacco plant. Northern blot analysis indicated the expression of the introduced mGM-CSF gene in both transgenic plant and cell suspension cultures. In addition, the biological activities of both murine and human GM-CSF from plant cell culture were confirmed by measuring the proliferation of the GM-CSF dependent FDC-PI and TF-1 cells, respectively.

  • PDF

Preparation of cross-linked silk fibroin film by γ-irradiation and their application as supports for human cell culture

  • Park, Hyean-Yeol;Kim, Yoon-Seob;Choi, Seong-Ho
    • 분석과학
    • /
    • 제27권1호
    • /
    • pp.27-33
    • /
    • 2014
  • This study described about preparation of the cross-linked silk fibroin (SF) film by ${\gamma}$-irradiation of the casted SF film, which is fabricated from aqueous solution regenerated via fibers of cocoons and their application as supports for human cell culture. The properties of cross-linked SF film were evaluated by FT-IR spectroscopy, contact angle, solubility to water, thermal analysis, surface area analyzer, and morphology via scanning electron microscopy (SEM). The cross-linked SF films were not dissolved in water and exhibited the rough surface morphology, large surface area, and good thermal properties. The human fibroblast cell (CCD-986sk) and embryo kidney-ft cell were well growed on the surface of cross-linked SF film supports prepared by ${\gamma}$-irradiation. The cross-linked SF film prepared by ${\gamma}$-irradiation can be used as biomaterials for human cell culture.

Design, Fabrication, and Application of a Microfluidic Device for Investigating Physical Stress-Induced Behavior in Yeast and Microalgae

  • Oh, Soojung;Kim, Jangho;Ryu, Hyun Ryul;Lim, Ki-Taek;Chung, Jong Hoon;Jeon, Noo Li
    • Journal of Biosystems Engineering
    • /
    • 제39권3호
    • /
    • pp.244-252
    • /
    • 2014
  • Purpose: The development of an efficient in vitro cell culture device to process various cells would represent a major milestone in biological science and engineering. However, the current conventional macro-scale in vitro cell culture platforms are limited in their capacity for detailed analysis and determination of cellular behavior in complex environments. This paper describes a microfluidic-based culture device that allows accurate control of parameters of physical cues such as pressure. Methods: A microfluidic device, as a model microbioreactor, was designed and fabricated to culture Saccharomyces cerevisiae and Chlamydomonas reinhardtii under various conditions of physical pressure stimulus. This device was compatible with live-cell imaging and allowed quantitative analysis of physical cue-induced behavior in yeast and microalgae. Results: A simple microfluidic-based in vitro cell culture device containing a cell culture channel and an air channel was developed to investigate physical pressure stress-induced behavior in yeasts and microalgae. The shapes of Saccharomyces cerevisiae and Chlamydomonas reinhardtii could be controlled under compressive stress. The lipid production by Chlamydomonas reinhardtii was significantly enhanced by compressive stress in the microfluidic device when compared to cells cultured without compressive stress. Conclusions: This microfluidic-based in vitro cell culture device can be used as a tool for quantitative analysis of cellular behavior under complex physical and chemical conditions.

Transient and stable expression of hepatitis B surface antigen in tomato (Lycopersicon esculentum L.)

  • Srinivas, L.;Sunil Kumar, G.B.;Ganapathi, T.R.;Revathi, C.J.;Bapat, V.A.
    • Plant Biotechnology Reports
    • /
    • 제2권1호
    • /
    • pp.1-6
    • /
    • 2008
  • Cotyledonary leaves of tomato cv. Megha were transformed with the hepatitis B virus 's' gene, which encodes surface antigen. Six plant expression cassettes (pHBS, pHER, pEFEHBS, pEFEHER, pSHER and pEFESHER) were used to assay the possible expression levels by agroinfiltration. The maximum transient expression level of 489.5 ng/g D.W. was noted in pEFEHER-infiltrated cotyledonary leaves. Transgenic tomato plants with pEFEHBS and pEFEHER expression cassettes were regenerated and characterized by molecular analysis. The expression of the antigen in the fruits was confirmed by RT-PCR and ELISA analysis. This is the first report on the expression of hepatitis B surface antigen in tomato.

Kinetic Analysis of the Effect of Cell Density on Hybridoma Cell Growth in Batch Culture

  • Lee, Eun-Yeol
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권2호
    • /
    • pp.117-120
    • /
    • 2002
  • The effect of cell density on cell growth was investigated in a suspension batch culture of hybridoma cells. The specific growth rate was found to increase with increasing initial cell density and then to decrease with further increases in initial cell density. In order to quantitatively describe the dependence of specific growth rate on cell density, a kinetic model is proposed, which satisfactorily represents the experimental data.

Analysis of S-glutathionylated proteins during adipocyte differentiation using eosin-glutathione and glutaredoxin 1

  • Hwang, Sungwon;Iram, Sana;Jin, Juno;Choi, Inho;Kim, Jihoe
    • BMB Reports
    • /
    • 제55권3호
    • /
    • pp.154-159
    • /
    • 2022
  • Protein S-glutathionylation is a reversible post-translational modification on cysteine residues forming a mixed disulfide with glutathione. S-glutathionylation, not only protects proteins from oxidation but also regulates the functions of proteins involved in various cellular signaling pathways. In this study, we developed a method for the detection of S-glutathionylated proteins (ProSSG) using eosin-glutathione (E-GSH) and mouse glutaredoxin 1 (mGrx1). ProSSG was efficiently and specifically labeled with E-GSH to form ProSSG-E via thiol-disulfide exchange. ProSSG-E was readily luminescent allowing the detection of ProSSG with semi-quantitative determination. In addition, a deglutathionylation enzyme mGrx1 specifically released E-GSH from ProSSG-E, which increased fluorescence allowing a sensitive determination of ProSSG levels. Application of the method to the adipocyte differentiation of 3T3-L1 cells showed specific detection of ProSSG and its increase upon differentiation induction, which was consistent with the result obtained by conventional immunoblot analysis, but with greater specificity and sensitivity.

BIPHASIC CULTURE STRATEGY BASED ON HYPEROSMOTIC PRESSURE FOR IMPROVED HUMANIZED ANTIBODY PRODUCTION IN CHINESE HAMSTER OVARY CELL CULTURE

  • 김민수;김노수;성윤희;이균민
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2002년도 생물공학의 동향 (X)
    • /
    • pp.293-296
    • /
    • 2002
  • Hyperosmotic pressure increased specific antibody productivity ($q_{Ab}$) of recombinant CHO cells (SH2-0.32) while it depressed cell growth. Thus, the use of hyperosmolar medium did not increase the maximum antibody concentration substantially. To overcome this drawback, the feasibility of biphasic culture strategy was investigated. In the biphasic culture, cells were first cultivated in the standard medium with physiological osmolality(294 mOsm/kg) for cell growth. When cells reached the late exponential phase of growth, the spent standard medium was replaced with the fresh hyperosmolar medium (522 mOsm/kg) for antibody production. The ($q_{Ab}$) in growth phase with the standard medium was 2.1 ${\mu}g/10^6cell/day$ while the ($q_{Ab}$) in antibody production phase with the hyperosmolar medium (522 mOsm/kg) was 11.1 ${\mu}g/10^6cell/day$. Northern blot analysis showed a positive relationship between the relative contenet of Ig mRNA and ($q_{Ab}$), indicating that transcriptional regulation was involved in the response of rCHO cells to hyperosmotic pressure. Due to the enhanced ($q_{Ab}$) and increased cell concentration in biphasic culture, the maximum antibody concentration obtained in biphasic culture with 522 mOsm/kg medium exchange was 161% higher than that obtained in batch culture with the standard medium. Taken together, simple biphasic culture strategy based on hyperosmotic culture for improved foreign protein production from rCHO cells is effective in improving antibody production of rCHO cells.

  • PDF