• Title/Summary/Keyword: cell communication

Search Result 1,581, Processing Time 0.03 seconds

New Generation Multijunction Solar Cells for Achieving High Efficiencies

  • Lee, Sunhwa;Park, Jinjoo;Kim, Youngkuk;Kim, Sangho;Iftiquar, S.M.;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.2
    • /
    • pp.31-38
    • /
    • 2018
  • Multijunction solar cells present a practical solution towards a better photovoltaic conversion for a wider spectral range. In this review, we compare different types of multi-ijunction solar cell. First, we introduce thin film multijunction solar cell include to the thin film silicon, III-V material and chalcopyrite material. Until now the maximum reported power conversion efficiencies (PCE) of solar cells having different component sub-cells are 14.0% (thin film silicon), 46% (III-V material), 4.4% (chalcopyrite material) respectively. We then discuss the development of multijunction solar cell in which c-Si is used as bottom sub-cell while III-V material, thin film silicon, chalcopyrite material or perovskite material is used as top sub-cells.

Communication Software Development and Experiments for a Cell Controller in a CIM System (자동화 시스템내 셀 제어기의 통신 소프트웨어 개발 및 실험)

  • S.H. Do;B.S. Jung;Park, G.J.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.4
    • /
    • pp.88-99
    • /
    • 1995
  • The demand for automatic manufacturing systems is increasing. Flexible Manufacturing System(FMS) is usually considered as a soluting for the shop floor automation. One of the difficulties in FMS is the communications problem. Since various machineries with different communications protocoles are included, applying a unified scheme is almost impossible. Therefore, a systematic approach is a key point to solve the communication problem. A cell is difined as an automation unit where closely related for a job reside together. A cell is a messenger between upper level computers and lower level machine equipment. In this research, the fonctions of the cell are defined to have more capabilities than conventional cells since a cell can be often a total manufacturing system is a small to medium sized factory. The cell conducts communications with different machines through the communications schemes established here. A set of software system has been developed according to the defined communication. The software has been tested for a simulation and real experiments for proof.

  • PDF

Indoor Wireless Optical Communication Using a Lighting LED and a Solar Cell (조명용 LED와 솔라 셀을 이용한 실내 무선광 통신)

  • Lee, Seong-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.3
    • /
    • pp.285-291
    • /
    • 2010
  • In this paper, we demonstrate that indoor wireless optical communication is possible with an LED and a solar cell. A lighting LED is used for lighting and signal transmission. A solar cell is used for collecting light energy and signal detection. This scheme is very useful because transmission is possible without any additional communication systems. In experiments, wireless optical communication was carried out at a data rate of 9.6 kbps using a lighting LED and a solar cell.

A Fuel Cell Generation System with a Fuel Cell Simulator

  • Lee Tae-Won;Jang Su-Jin;Jang Han-Keun;Won Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.55-61
    • /
    • 2005
  • A fuel cell (FC) system includes a fuel processor plus subsystems to manage air, water, and thermal energy, and electric power. The overall system is high-priced and needs peripheral devices. In this paper, a FC simulator is designed and constructed with the electrical characteristics of a fuel cell generation (FCG) system, using uses a simple buck converter to overcome these disadvantages. The characteristic voltage and current (V-I) curve for the FC simulator is controlled by a simplified linear function. In addition, to verify FCG system performance and operation, a full-bridge DC/DC converter and a single-phase DC/AC inverter were designed and constructed for FC applications. Close agreement between the simulation and experimental results confirms the validity and usefulness of the proposed FC simulator.

Blood-neural barrier: its diversity and coordinated cell-to-cell communication

  • Choi, Yoon-Kyung;Kim, Kyu-Won
    • BMB Reports
    • /
    • v.41 no.5
    • /
    • pp.345-352
    • /
    • 2008
  • The cerebral microvessels possess barrier characteristics which are tightly sealed excluding many toxic substances and protecting neural tissues. The specialized blood-neural barriers as well as the cerebral microvascular barrier are recognized in the retina, inner ear, spinal cord, and cerebrospinal fluid. Microvascular endothelial cells in the brain closely interact with other components such as astrocytes, pericytes, perivascular microglia and neurons to form functional 'neurovascular unit'. Communication between endothelial cells and other surrounding cells enhances the barrier functions, consequently resulting in maintenance and elaboration of proper brain homeostasis. Furthermore, the disruption of the neurovascular unit is closely involved in cerebrovascular disorders. In this review, we focus on the location and function of these various blood-neural barriers, and the importance of the cell-to-cell communication for development and maintenance of the barrier integrity at the neurovascular unit. We also demonstrate the close relation between the alteration of the blood-neural barriers and cerebrovascular disorders.

The Simplified PWM Method using Serial Communication in Cascaded H-Bridge Multilevel Inverter (직렬통신을 이용한 H-브릿지 멀티레벨 인버터의 PWM 구현방법)

  • Park Young-Min;Ryu Han-Seong;Lee Hyun-Won;Lee Se-Hyun;Lee Chung-Dong;Yoo Jl-Yoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.620-627
    • /
    • 2004
  • As h-bridge multilevel inverter is connected with series of single phase power cell, so it obtain high voltage using low voltage power semi-conductor and output voltage similar to sine wave. In this topology, the number of power cell increases in proportion to the output voltage level. Therefore, there are drawbacks that are responsibility against operating ability of main controller and signal wire increase. However, we can overcome this problems by the substitution of serial communication for the PWM signal in power cell control. Additionally, it has merits of reliability and maintenance. This paper deals with the synchronization and phase-shift method of power cell PWM using CAN(Controller Area Network) communication interrupt in H-bridge multilevel inverter. The advantages of proposed method are signal-line simplification using serial communication between main controller and cell controller, burden reduction in main controller, modularization of power cell, easy protection of each power cell, expandability improvement and reliability increase of control signal and power cell. This paper establishes propriety and reliability of proposed method through experiment of 13-level H-bridge multilevel inverter.

Light Trapping in Silicon Based Tandem Solar Cell: A Brief Review

  • Iftiquar, Sk Md;Park, Hyeongsik;Dao, Vinh Ai;Pham, Duy Phong;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Among the various types of solar cells, silicon based two terminal tandem solar cell is one of the most popular one. It is designed to split the absorption of incident AM1.5 solar radiation among two of its component cells, thereby widening the wavelength range of external quantum efficiency (EQE) spectra of the device, in comparison to that of a single junction solar cell. In order to improve the EQE spectra further and raise short circuit current density ($J_{sc}$) an optimization of the tradeoff between the top and bottom cell is needed. In an optimized cell structure, the $J_{sc}$ and hence efficiency of the device can further be enhanced with the help of light trapping scheme. This can be achieved by texturing front and back surface as well as a back reflector of the device. In this brief review we highlight the development of light trapping in the silicon based tandem solar cell.

Classifier Combination Based Source Identification for Cell Phone Images

  • Wang, Bo;Tan, Yue;Zhao, Meijuan;Guo, Yanqing;Kong, Xiangwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.5087-5102
    • /
    • 2015
  • Rapid popularization of smart cell phone equipped with camera has led to a number of new legal and criminal problems related to multimedia such as digital image, which makes cell phone source identification an important branch of digital image forensics. This paper proposes a classifier combination based source identification strategy for cell phone images. To identify the outlier cell phone models of the training sets in multi-class classifier, a one-class classifier is orderly used in the framework. Feature vectors including color filter array (CFA) interpolation coefficients estimation and multi-feature fusion is employed to verify the effectiveness of the classifier combination strategy. Experimental results demonstrate that for different feature sets, our method presents high accuracy of source identification both for the cell phone in the training sets and the outliers.

Advanced Interchangeable Dynamic Simulation Model for the Optimal Design of a Fuel Cell Power Conditioning System

  • Kim, Jong-Soo;Choe, Gyu-Yeong;Lee, Byoung-Kuk;Shim, Jae-Sun
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.561-570
    • /
    • 2010
  • This paper presents an advanced dynamic simulation model of a proton exchange membrane fuel cell for the optimal design of a fuel cell power conditioning system (FC-PCS). For the development of fuel cell models, the dynamic characteristics of the fuel cell are considered, including its static characteristics. Then, software fuel cell simulation is realized using Matlab-Simulink. Specifically, the design consideration of PCS (i.e., power semiconductor switch, capacitor, and inductor) is discussed by comparatively analyzing the developed simulator and ideal DC source. In addition, a cosimulation between the fuel cell model and PCS realized using the PSIM software is performed with the help of the SimCoupler module. Detailed analysis and informative simulation results are provided for the optimal design of fuel cell PCS.

An Adaptive Cell Selection Scheme for Ultra Dense Heterogeneous Mobile Communication Networks (초밀집 이종 이동 통신망을 위한 적응형 셀 선택 기법)

  • Jo, Jung-Yeon;Ban, Tae-Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1307-1312
    • /
    • 2015
  • As smart-phones become popular, mobile data traffic has been dramatically increasing and intensive researches on the next-generation mobile communication network is in progress to meet the increasing demand for mobile data traffic. In particular, heterogeneous network (HetNet) is attracting much interest because it can significantly enhance the network capacity by increasing the spatial reuse with macro and small cells. In the HetNet, we have several problems such as load imbalance and interference because of the difference in transmit power between macro and small cells and cell range expansion (CRE) can mitigate the problems. In this paper, we propose a new cell selection scheme with adaptive cell range expansion bias (CREB) for ultra dense HetNet and we analyze the performance of the proposed scheme in terms of average cell transmission rate through system-level simulations and compare it with those of other schemes.