• Title/Summary/Keyword: cell apoptosis

Search Result 4,266, Processing Time 0.031 seconds

Antitumor effects of octyl gallate on hypopharyngeal carcinoma cells

  • NTK, Trang;Yoo, Hoon
    • International Journal of Oral Biology
    • /
    • v.45 no.4
    • /
    • pp.218-224
    • /
    • 2020
  • The antitumor effects of octyl gallate (OG) were investigated on FaDu human hypopharyngeal squamous carcinoma cells. At various concentrations, OG inhibited the proliferation of FaDu cells by suppressing cell cycle regulators and induced apoptosis by activating caspase 3 and its downstream poly (ADP-ribose) polymerase, thereby damaging DNA. Immunoblotting demonstrated that OG significantly suppressed the expression of integrin family proteins (integrin α4, αv, β3, β4), hindering cell adhesion. The reduced expression of integrins subsequently mediated the mitogen-activated protein kinase signaling pathway to stimulate the activation of extracellular signal-regulated kinases and c-jun N-terminal kinases, leading to apoptosis. Thus, OG demonstrated antitumor activity on hypopharyngeal squamous carcinoma cells by suppressing cell proliferation and inducing apoptosis.

Vitamin C Induces Apoptosis in Human Colon Cancer Cell Line, HCT-8 Via the Modulation of Calcium Influx in Endoplasmic Reticulum and the Dissociation of Bad from 14-3-$3{\beta}$

  • Kim, Jee Eun;Kang, Jae Seung;Lee, Wang Jae
    • IMMUNE NETWORK
    • /
    • v.12 no.5
    • /
    • pp.189-195
    • /
    • 2012
  • It has been reported that vitamin C plays an effective role in the treatment and prevention of cancer, but its specific mechanisms are still largely unknown. The incidence of colon cancer is now increasing in Korea. Therefore, we have examined here the effect of vitamin C on the induction of the apoptosis on colon cancer and its related mechanisms. We have found that remarkable increase of the apoptosis and the calcium influx in endoplasmic reticulum (ER) in human colon cancer cell line, HCT-8. However, vitamin C-induced apoptosis was effectively inhibited by the pre-treatment of BAPTA-AM (1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid), which is well-known as a calcium specific chelator. During the apoptosis, we found the increase of the translocation of Bad to mitochondria from cytosol, after releasing from 14-3-$3{\beta}$. In this process, the expression of Bax, a well-known pro-apoptotic protein, was also increased. Taken together, vitamin C induces apoptosis of colon cancer cell line, HCT-8 through the increase of 1) the calcium influx in endoplasmic reticulum (ER), 2) the translocation of Bad to mitochondria, and 3) the expression of Bax.

Potassium Cyanate Induces Apoptosis of Human Colorectal Cancer Cell via Mitochondrial Pathway

  • Yang, Eun-Ju;Chang, Jeong-Hyun
    • Biomedical Science Letters
    • /
    • v.17 no.3
    • /
    • pp.177-184
    • /
    • 2011
  • Potassium cyanate (KOCN) is an inorganic compound and induces the carbamylation of proteins with cytotoxic effects on human cells. Although there is a potential cytotoxic molecule, the role of KOCN on the apoptosis of cancer cell is not well understood. The present study investigated the effects of KOCN on the human colorectal cancer cell line, HCT 116 cells. To understand the anti-cancer effect of KOCN on HCT 116 cells, we examined alteration of apoptosis, the intracellular $Ca^{2+}$ concentration, the intracellular signaling pathway and generation of reactive oxygen species (ROS) in these cells treated with KOCN. The apoptosis of HCT 116 cells was induced by KOCN in a dose-dependent manner at 24 hours and 48 hours, respectively. The apoptosis was processed via the cleavage of poly ADP-ribose polymerase (PARP) and activation of caspase 3 in HCT 116 cells. KOCN induced the elevation of intracellular $Ca^{2+}$ concentration and changed the expressions of Bcl-2 family proteins. The pro-apoptotic Bax was continuously up-regulated, and the anti-apoptotic Bcl-2 was down-regulated by KOCN. KOCN also induced the hyperpolarization of mitochondria and the generation of ROS in HCT 116 cells. Taken together, these results indicate that KOCN induces the apoptosis of HCT 116 cells by disruption of $Ca^{2+}$ homeostasis and via mitochondrial pathway. This study provides the compound that may be used as a potent agent for the treatment of colorectal cancer.

Expression of Bcl-2 and Caspase-3 Proteins Related to Apoptosis in Human Leukemia K-562 Cells

  • Chang Jeong-Hyun;Kwon Heun-Young
    • Biomedical Science Letters
    • /
    • v.11 no.3
    • /
    • pp.281-287
    • /
    • 2005
  • Although actinomycin D (AMD) is known to induce apoptotic cell death to various cell lines, the mechanism of apoptosis induced by AMD is still unclear. Understanding this mechanism may improve its therapeutic efficacy. The present study has been performed to elucidate expression of Bcl-2 and Caspase-3 proteins related to apoptosis in human leukemia K-562 cells. Five different assays were performed in this study; DNA fragmentation analysis by agarose gel electrophoresis, quantitative assay of fragmented DNA, morphological assessment of apoptotic cells, quantification of apoptosis by annexin V (AV) and propidium iodide (PI) staning, and expression of Bcl-2 and Caspase-3 proteins by the western blot analysis. The number of apoptotic cells and amount of fragmented DNA in this cell line treated with AMD was increased at 6 hour. DNA ladder pattern was also appeared at 6 hour. The expression of Bcl-2 was decreased, and disappeared from 12 hours after AMD treatment. Precursor of Caspase-3 was degraded, and 20 kDa cleavage products were detected. These results suggest that AMD induced apoptosis of K-562 cells is Caspase-3-dependent fashion, and this apoptosis is related to the degradation of Bcl-2 proteins.

  • PDF

Induction of Apoptosis in Human Monocytes by Human Cytomegalovirus is Related with Calcium Increase

  • Moon, Myung-Sook;Lee, Gyu-Cheol;Lee, Chan H.
    • Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.224-229
    • /
    • 2002
  • The effect of human cytomegalovirus (HCMV) on three human monocyte cell lines at different stages of differentiation was investigated. While the viability of HL-60 cells or U-937 cells was not significantly affected by HCMV infection, the viability of THP-1 cells was reduced. Acridine orange/ethidiurn bromide staining revealed that the reduction of THP-1 cell viability was due to increased apoptotic death following HCMV infection. Apoptosis in HL-60 cells was not affected by HCMV infection, and induction of apoptosis of U-937 cells by HCMV was intermediate between HL-60 and THP-1 cells. Since HL-60 cells are the least differentiated and THP-1 cells are the most differentiated, the induction of apoptosis of human monocytes appears to be related to the degree of cell differentiation. Flow cytometric and confocal microscopic studies using fluorescent calcium indicator Fluo-3 suggested a significant increase in intracellular free calcium concentration ([Ca$\^$2+/]i) in THP-1 cells undergoing apoptosis by HCMV infection. Again [Ca$\^$2+/]i in HCMV-infected HL-60 cells was not critically altered, and that in HCMV-infected U-937 cells was intermediate between THP-1 cells and HL-60 cells. Calcium influx blockers such as verapamil and nifedipine partially reversed HCMV-induced apoptosis in THP-1 cells.

Association of Dexamethasone-induced Apoptosis and $G_l-Arrest$ of Human Leukemic CEM Cells with Polyamine Deficit

  • Choi, Sang-Hyun;Lee, Jung-Ae;Chae, Yang-Seok;Min, Bon-Hong;Chun, Yeon-Sook;Chun, Boe-Gwun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.4
    • /
    • pp.457-466
    • /
    • 1997
  • The effects of DFMO or/and putrescine on the dexamethasone-induced apoptosis of CEM cells were studied to investigate the role of polyamines in anti-leukemic glucocorticoid action. Dexamethasone- induced apoptosis was preceded by significant decreases of cellular polyamine contents and putrescine uptake activity. But DFMO produced decreases of putrescine and spermidine contents and marked increase of putrescine uptake activity, but did not induce apoptosis. However, dexamethasone and DFMO, respectively, induced $G_1-arrest$ in cell cycle and hypophosphorylation of pRb, resulting in the increase of $G_1$ to S ratio and decrease of CEM cell count. DFMO enhanced the dexamethasone-induced apoptosis and $G_1-arrest$. On the other hand, putrescine little affected the apoptotic and $G_1-arresting$ activities of dexamethasone, but almost suppress the effects of DFMO and also the DFMO-dependent enhancement of dexamethasone effects. These results suggested that the dexamethasone-induced apoptosis to be associated with pRb hypophosphorylation and $G_1-arrest$ in CEM cells might be ascribed to the concomitant decreases of cellular polyamine contents and putrescine uptake activity.

  • PDF

Clostridium difficile Toxin A Upregulates Bak Expression through PGE2 Pathway in Human Colonocytes

  • Kim, Young Ha;Kim, Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1675-1681
    • /
    • 2019
  • Clostridium difficile toxin A is known to cause colonic epithelial cell apoptosis, which is considered the main causative event that triggers inflammatory responses in the colon, reflecting the concept that the essential role of epithelial cells in the colon is to form a physical barrier in the gut. We previously showed that toxin A-induced colonocyte apoptosis and subsequent inflammation were dependent on prostaglandin E2 ($PGE_2$) produced in response to toxin A stimulation. However, the molecular mechanism by which $PGE_2$ mediates cell apoptosis in toxin A-exposed colonocytes has remained unclear. Here, we sought to identify the signaling pathway involved in toxin A-induced, $PGE_2$-mediated colonocyte apoptosis. In non-transformed NCM460 human colonocytes, toxin A exposure strongly upregulated expression of Bak, which is known to form mitochondrial outer membrane pores, resulting in apoptosis. RT-PCR analyses revealed that this increase in Bak expression was attributable to toxin A-induced transcriptional upregulation. We also found that toxin A upregulation of Bak expression was dependent on $PGE_2$ production, and further showed that this effect was recapitulated by an Prostaglandin E2(PGE2) receptor-1 receptor agonist, but not by agonists of other EP receptors. Collectively, these results suggest that toxin A-induced cell apoptosis involves $PGE_2$-upregulation of Bak through the EP1 receptor.

Hydroxyzine Induces Cell Death in Triple-Negative Breast Cancer Cells via Mitochondrial Superoxide and Modulation of Jak2/STAT3 Signaling

  • Shakya, Rajina;Park, Gyu Hwan;Joo, Sang Hoon;Shim, Jung-Hyun;Choi, Joon-Seok
    • Biomolecules & Therapeutics
    • /
    • v.30 no.6
    • /
    • pp.585-592
    • /
    • 2022
  • Treatment of triple-negative breast cancer (TNBC) has been limited due to the lack of molecular targets. In this study, we evaluated the cytotoxicity of hydroxyzine, a histamine H1 receptor antagonist in human triple-negative breast cancer BT-20 and HCC-70 cells. Hydroxyzine inhibited the growth of cells in dose- and time-dependent manners. The annexin V/propidium iodide double staining assay showed that hydroxyzine induced apoptosis. The hydroxyzine-induced apoptosis was accompanied down-regulation of cyclins and CDKs, as well as the generation of reactive oxygen species (ROS) without cell cycle arrest. The effect of hydroxyzine on the induction of ROS and apoptosis on TNBC cells was prevented by pre-treatment with ROS scavengers, N-acetyl cysteine or Mito-TEMPO, a mitochondria-targeted antioxidant, indicating that an increase in the generation of ROS mediated the apoptosis induced by hydroxyzine. Western blot analysis showed that hydroxyzine-induced apoptosis was through down-regulation of the phosphorylation of JAK2 and STAT3 by hydroxyzine treatment. In addition, hydroxyzine induced the phosphorylation of JNK and p38 MAPK. Our results indicate that hydroxyzine induced apoptosis via mitochondrial superoxide generation and the suppression of JAK2/STAT3 signaling.

Effects of Hominis Placenta on the Growth of Human Uterine Myoma Cells and Cell Apoptosis (자하거(紫河車)가 자궁근종세포(子宮筋腫細胞)의 성장억제(成長抑制)와 세포자멸사(細胞自滅死)에 미치는 영향(影響))

  • Wee, Hyo-Sun;Lee, Jin-Moo;Lee, Chang-Hoon;Cho, Jung-Hoon;Jang, Jun-Bock;Lee, Kyung-Sub
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.21 no.2
    • /
    • pp.38-48
    • /
    • 2008
  • Purpose: This study was conducted to investigate the effects of Hominis Placenta (紫河車) on the growth of human uterine myoma cells and cell apoptosis. Methods: Human uterine leiomyoma cells were cultured and treated with Hominis Placenta extract for 48 hours. Cell proliferation and activity was analyzed by MTT assay. We analyzed the cell cycle of human uterine myoma cells treated Hominis Placenta extract by FACS. Expression of proteins related to cell apoptosis (Bax, Bcl-2), cyclin-D1 and VEGF were evaluated by Western blotting method. Results: The human uterine myoma cells treated by Hominis Placenta extract didn't proliferate below the concentration of $10mg/m{\ell}$. And there was no remarkable difference on cell cycle analysis below the concentration of $10mg/m{\ell}$. The expression of Bax was decreased and the expression of Bcl-2 was increased after the treatment of Hominis Placenta extract. But the expressions of cyclin-D1 and VEGF were increased after the treatment of Hominis Placenta extract. Conclusion: This study suggests that Hominis Placenta induce uterine myoma cell apoptosis and have effect on the myoma cell proliferation in the concentraion below $10mg/m{\ell}$.

  • PDF

Apoptotic effect of $IP_6$ was not enhanced by co-treatment with myo-inositol in prostate carcinoma PC3 cells

  • Kim, Hyun-Jung;Jang, Yu-Mi;Kim, Harriet;Kwon, Young-Hye
    • Nutrition Research and Practice
    • /
    • v.1 no.3
    • /
    • pp.195-199
    • /
    • 2007
  • Inositol hexaphosphate ($IP_6$) is a major constituent of most cereals, legumes, nuts, oil seeds and soybean. Previous studies reported the anticancer effect of $IP_6$ and suggested that co-treatment of $IP_6$ with inositol may enhance anticancer effect of $IP_6$. Although the anticancer effect of $IP_6$ has been intensively studied, the combinational effect of $IP_6$ and inositol and involved mechanisms are not well understood so far. In the present study, we investigated the effect of $IP_6$ and myo-inositol (MI) on cell cycle regulation and apoptosis using PC3 prostate cancer cell lines. When cell, were co-treated with $IP_6$ and MI, the extent of cell growth inhibition was significantly increased than that by $IP_6$ alone. To identify the effect of $IP_6$ and MI on apoptosis, the activity of caspase-3 was measured. The caspase-3 activity was significantly increased when cells were treated with either $IP_6$ alone or both $IP_6$ and MI, with no significant enhancement by co-treatment. To investigate the effect of $IP_6$ and MI of cell cycle arrest, we measured p21 mRNA expression in PC3 cells and observed significant increase in p21 mRNA by $IP_6$. But synergistic regulation by co-treatment with $IP_6$ and MI was not observed. In addition, there was no significant effect by co-treatment compared to $IP_6$ treatment on the regulation of cell cycle progression although $IP_6$ significantly changed cell cycle distribution in the presence of MI or not. Therefore, these findings support that $IP_6$ has anticancer function by induction of apoptosis and regulation of cell cycle. However, synergistic effect by MI on cell cycle regulation and apoptosis was not observed in PC3 prostate cancer cells.