• Title/Summary/Keyword: cell adhesion activity

Search Result 269, Processing Time 0.026 seconds

Bioconversion of Isoflavones and the Probiotic Properties of the Electroporated Parent and Subsequent Three Subcultures of Lactobacillus fermentum BT 8219 in Biotin-Soymilk

  • Ewe, Joo-Ann;Wan-Abdullah, Wan-Nadiah;Alias, Abdul Karim;Liong, Min-Tze
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.947-959
    • /
    • 2012
  • This study was aimed at an evaluation of the potential inheritance of electroporation effects on Lactobacillus fermentum BT 8219 through to three subsequent subcultures, based on their growth, isoflavone bioconversion activities, and probiotic properties, in biotin-supplemented soymilk. Electroporation was seen to cause cell death immediately after treatment, followed by higher growth than the control during fermentation in biotin-soymilk (P<0.05). This was associated with enhanced intracellular and extracellular ${\beta}$-glucosidase specific activity, leading to increased bioconversion of isoflavone glucosides to aglycones (P<0.05). The growing characteristics, enzyme, and isoflavone bioconversion activities of the first, second, and third subcultures of treated cells in biotin-soymilk were similar to the control (P>0.05). Electroporation affected the probiotic properties of parent L. fermentum BT 8219, by reducing its tolerance towards acid (pH 2) and bile, lowering its inhibitory activities against selected pathogens, and reducing its ability for adhesion, when compared with the control (P<0.05). The first, second, and third subcultures of the treated cells showed comparable traits with that of the control (P>0.05), with the exception of their bile tolerance ability, which was inherited to the treated cells of the first and second subcultures (P<0.05). Our results suggest that electroporation could be used to increase the bioactivity of biotin-soymilk via fermentation with probiotic L. fermentum BT 8219, with a view towards the development of functional foods.

Physiological Characteristics of Lactobacillus casei Strains and Their Alleviation Effects against Inflammatory Bowel Disease

  • Liu, Yang;Li, Yifeng;Yu, Xinjie;Yu, Leilei;Tian, Fengwei;Zhao, Jianxin;Zhang, Hao;Zhai, Qixiao;Chen, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.92-103
    • /
    • 2021
  • Lactobacillus casei, one of the most widely used probiotics, has been reported to alleviate multiple diseases. However, the effects of this species on intestinal diseases are strain-specific. Here, we aimed to screen L. casei strains with inflammatory bowel disease (IBD)-alleviating effects based on in vitro physiological characteristics. Therefore, the physiological characteristics of 29 L. casei strains were determined, including gastrointestinal transit tolerance, oligosaccharide fermentation, HT-29 cell adhesion, generation time, exopolysaccharide production, acetic acid production, and conjugated linoleic acid synthesis. The effects of five candidate strains on mice with induced colitis were also evaluated. The results showed that among all tested L. casei strains, only Lactobacillus casei M2S01 effectively relieved colitis. This strain recovered body weight, restored disease activity index score, and promoted anti-inflammatory cytokine expression. Gut microbiota sequencing showed that L. casei M2S01 restored a healthy gut microbiome composition. The western blotting showed that the alleviating effects of L. casei M2S01 on IBD were related to the inhibition of the NF-κB pathway. A good gastrointestinal tolerance ability may be one of the prerequisites for the IBD-alleviating effects of L. casei. Our results verified the efficacy of L. casei in alleviating IBD and lay the foundation for the rapid screening of L. casei strain with IBD-alleviating effects.

Toxoplasma gondii IST suppresses inflammatory and apoptotic responses by inhibiting STAT1-mediated signaling in IFN-γ/TNF-α-stimulated hepatocytes

  • Seung-Hwan Seo;Ji-Eun Lee;Do-Won Ham;Eun-Hee Shin
    • Parasites, Hosts and Diseases
    • /
    • v.62 no.1
    • /
    • pp.30-41
    • /
    • 2024
  • The dense granule protein of Toxoplasma gondii, inhibitor of signal transducer and activator of transcription 1 (IST) is an inhibitor of signal transducer and activator of transcription 1 (STAT1) transcriptional activity that binds to STAT1 and regulates the expression of inflammatory molecules in host cells. A sterile inflammatory liver injury in pathological acute liver failures occurs when excessive innate immune function, such as the massive release of IFN-γ and TNF-α, is activated without infection. In relation to inflammatory liver injury, we hypothesized that Toxoplasma gondii inhibitor of STAT1 transcription (TgIST) can inhibit the inflammatory response induced by activating the STAT1/IRF-1 mechanism in liver inflammation. This study used IFN-γ and TNF-α as inflammatory inducers at the cellular level of murine hepatocytes (Hepa-1c1c7) to determine whether TgIST inhibits the STAT1/IRF-1 axis. In stable cells transfected with TgIST, STAT1 expression decreased with a decrease in interferon regulatory factor (IRF)-1 levels. Furthermore, STAT1 inhibition of TgIST resulted in lower levels of NF-κB and COX2, as well as significantly lower levels of class II transactivator (CIITA), iNOS, and chemokines (CLXCL9/10/11). TgIST also significantly reduced the expression of hepatocyte proapoptotic markers (Caspase3/8/9, P53, and BAX), which are linked to sterile inflammatory liver injury. TgIST also reduced the expression of adhesion (ICAM-1 and VCAM-1) and infiltration markers of programmed death-ligand 1 (PD-L1) induced by hepatocyte and tissue damage. TgIST restored the cell apoptosis induced by IFN-γ/TNF-α stimulation. These results suggest that TgIST can inhibit STAT1-mediated inflammatory and apoptotic responses in hepatocytes stimulated with proinflammatory cytokines.

The Expression of Adhesion Molecules on Alveolar Macrophages and Lymphocytes and Soluble ICAM-1 Level in Serum and Bronchoalveolar Lavge(BAL) Fluid of Patients with Diffuse Interstitial Lung Diseases(DILD) (간질성 폐질환환자들의 기관지 폐포세척액내 폐포 대식세포와 임파구의 접착분자 발현 및 Soluble ICAM-1 농도에 관한 연구)

  • Kim, Dong-Soon;Choi, Kang-Hyun;Yeom, Ho-Kee;Park, Myung-Jae;Lim, Chai-Man;Koh, Yoon-Suck;Kim, Woo-Sung;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.4
    • /
    • pp.569-583
    • /
    • 1995
  • Background: The expression of the adhesion molecules on the cell surface is important in the movement of cells and the modulation of immune response. DILD starts as an alveolitis and progresses to pulmonary fibrosis. So adhesion molecules in these patients is expected to be increased. There are several reports about adhesion molecules in DILD in terms of the percentage of positive cells in immuno-stain, in which the interpretation is subjective and the data were variable. Methods: So we measured the relative median fluorescence intensity(RMFI) which is the ratio of the FI emitted by bound primary monoclonal antibody to FI emitted by isotypic control antibody of the cells in BALF of 28 patients with DILD(IPF:10, collagen disease:7, sarcoidosis:9, hypersensitivity pneumonitis:2) and 9 healthy control. Results: RMFI of the ICAM-1 on AM($3.30{\pm}1.16$) and lymphocyte($5.39{\pm}.70$) of DILD were increased significantly than normal control($0.93{\pm}0.18$, $1.06{\pm}0.21$, respectively, p=0.001, P=0.003). RMFI of the CD18 on lymphocyte was also higher($24.9{\pm}14.9$) than normal($4.59{\pm}3.77$, p=0.0023). And there was a correlation between RMFI of ICAM on AM and the % of AM(r=-0.66, p=0.0001) and lymphocyte(r=0.447, p=0.0116) in BALF. Also RMFI of ICAM on lymphocyte had a significant (r=0.593, p=0.075) correlation with the % of IL-2R(+) lymphocyte in BALF. The soluble ICAM(sICAM) in serum was also significantly elevated in DILD($499.7{\pm}222.2\;ng/ml$) compred to normal($199.0{\pm}38.9$) (p=0.00097) and sICAM in BAL fluid was also significantly higher than normal control group($41.8{\pm}23.0\;ng/ml$ vs $20.1{\pm}13.6\;ng/ml$). There was a Significant correlation between sICAM level in serum and the expression of ICAM-l on AM(r=0.554, p=0.0259).Conclusion: These data suggest that in DILD the expression of adhesion molecules is increased in the AM and BAL lymphocytes with elevated serum sICAM, and these parameter may be useful in determining disease activity.

  • PDF

Osteogenesis of Human Adipose Tissue Derived Mesenchymal Stem Cells (ATMSCs) Seeded in Bioceramic-Poly D,L-Lactic-co-Glycolic Acid (PLGA) Scaffold (Bioceramic-Poly D,L-Lactic-co-Glycolic Acid(PLGA) Scaffold에 접종한 인간지방조직-유래 중간엽 줄기세포의 골 형성)

  • Kang, Yu-Mi;Hong, Soon-Gab;Do, Byung-Rok;Kim, Hae-Kwon;Lee, Joon-Yeong
    • Development and Reproduction
    • /
    • v.15 no.2
    • /
    • pp.87-98
    • /
    • 2011
  • The present experiment was performed to evaluate the osteogenic differentiation of human adipose tissue derived mesenchymal stem cells (ATMSCs) seeded in bioceramic-poly D,L-latic-co-glycolic acid (PLGA) scaffold. Osteogenic differentiation of ATMSCs were induced using the osteogenic induction (OI) medium. ATMSCs were cultured with OI medium during 28 days in well plate. The proliferation of ATMSCs in OI medium group was significantly increased for 14 days of plate culture but slowed after 21 days. On the other hand, proliferation in the control group showed constant increase for 28 days of culturing. The alkaline phosphatase (ALP) activity of ATMSCs in OI medium group increased during the 21 days of culture but decreased on 28 days. However, in control group ALP activity of ATMSCs was continuously decreased as time goes. Nodule was observed at 21 days of culture in OI medium group and confirmed accumulation of calcium in cell by alizarin red staining. ATMSCs were seeded in PLGA scaffold or in Bioceramic-PLGA scaffold, and cultured with OI medium. ALP activity of ATMSCs by osteoblast differentiation in each scaffold increased on 21 days of culture and decreased rapidly on 28 days. ALP activity of ATMSCs was increased highly in Bioceramic-PLGA scaffold compared to PLGA scaffold on 21 days of culturing. SEM-EDS analysis demonstrated that calcium and phosphate content and Ca/P ratio in Bioceramic-PLGA scaffold increased higher than in PLGA scaffold. Biodegradability of scaffold at 56 days after implantation showed that Bioceramic-PLGA scaffold was more biodegradable than PLGA scaffold. The results demonstrated that the differentiation of ATMSCs to osteoblast were more effective in scaffold culture than well plate culture. Bioceramic increased cell adhesion rate on scaffold and ALP activity by osteoblast differentiation. Also, bioceramic was considered to increase the calcium and phosphate in scaffold when ATMSCs was mineralized by osteogenic differentiation. Bioceramic-PLGA scaffold enhanced the osteogenesis of seeded ATMSCs compared to PLGA scaffold.

EFFECTS OF SUBINHIBITORY CONCENTRATIONS OF ANTIMICROBIAL AGENTS ON CELL SURFACE PROPERTIES AND VIRULENCE FACTORS OF MUTANS STREPTOCOCCI (아저해농도(亞沮害濃度)의 항균물질이 mutans streptococci의 세포표면성질과 독력인자에 미치는 영향)

  • Kim, Young-Jae;Hahn, Se-Hyun;Lee, Sang-Hoon;Jang, Ki-Taeg;Kim, Chol-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.4
    • /
    • pp.605-616
    • /
    • 2004
  • Subinhibitory concentrations (sub-MICs) refer to concentrations below minimum inhibitory concentrations (MICs). The antimicrobial agents may be present at relatively high concentration, at least higher than bacterial MIC and thereafter be deserted off a surface and function at sub-MICs, perhaps by interfering with bacterial metabolism. Consequently, the aim of this study was to determine the effects of growth, in the presence of sub-MICs of antimicrobial agents, on the cell surface properties and virulence factors of mutans streptococci and to investigate the efficacy of a chemical approach in vitro. Streptococcus mutans Ingbritt and Streptococcus sobrinus 6715-7 were used. Eight antimicrobial agents (Sanguinaria extract;SG, Chlorhexidine digluconate;CHX, Fluoride;F, Propolis;PP, Hydrogen peroxide;HP, Triclosan;TC, Sodium dodecyl sulfate;SDS Cetylpyridinium chloride; CC) were diluted serially in broth to determine MICs and to compare the growth rate, acid production, hydrophobicity, adhesion activity to saliva coated hydroxyapatite, glucan synthesis and cellular aggregation of experiment groups (in the presence of sub-MICs) with those of control (in the absence of antimicrobial agents). Sub-MICs of antimicrobial agents affected the growth of cells, hydrophobicity, and adhesion of bacteria to saliva coated hydroxyapatite and glucan synthesis. They also resulted in a significant reduction in pH after 12 hours (p<0.05). By cells pretreated with proteinase K, either the aggregation induced by antimicrobial agents was completely inhibited or the aggregation titers were markedly increased. According to the results of the present study, each antimicrobial agent at sub-MICs could affect similar as its known action mechanism and could continually inhibit cariogenic bacteria at such concentrations. Thus, the use of these antimicrobial agents would be one of the effective methods to prevent dental caries.

  • PDF

The biological effects of fibronectin typeIII 7-10 to MC3T3-E1 osteoblast (Fibronectin type III 7-10 이 조골세포에 미치는 영향)

  • Hong, Jeong-Ug;Choi, Sang-Mook;Han, Soo-Boo;Chung, Chong-Pyoung;Rhyu, In-Chul;Lee, Yong-Moo;Ku, Young
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.1
    • /
    • pp.143-160
    • /
    • 2002
  • 타이태늄은 뛰어난 생체적합성과 적절한 물리적 성질을 바탕으로 치과 및 정형외과 영역의 매식재로 널리사용되어져 왔으며, 골과 매식재 사이의 골 융합 정도를 증가시킬 목적으로 물리, 화학적인 방법을 이용한 타이태늄의 표면처리에 관한 많은 연구들이 진행되어 왔다. 최근에는 부착단백질 또는 성장인자를 이용한 생체재료의 표면개질을 통하여 조직적합성 및 치유 능의 개선을 위한 시도들이 있어왔다. Fibronectin(FN)은 주요 세포외기질중의 하나로 생체 내 널리 분포하여 세포의 부착, 이동 및 증식에 관여하는 거대 당단백으로, RGD및 PHSRN 펩타이드 서열이 세포의 인테그린과 결합하여 세포의 활성을 조절하는 것으로 알려져 있다. 이 연구에서는 FN으로 처리된 타이태늄이 조골세포의 부착, 증식 및 분화에 미치는 영향과 이에 따른 석회화 정도에 미치는 영향을 관찰하여 부착분자를 이용한 타이태늄 표면개질의 효과를 규명하고자 하였다. 상업용 순수 타이태늄을 gold thiol법을 이용하여 표면처리 후, 혈장 FN(plasma FN, pFN)과 유전자재조합법을 이용하여 얻은 FN조각(FN type III 7-10, FNIII 7-10)을 피복한 시편을 실험군으로, 아무런 처리를 하지 않은것(smooth surface, SS)과 산 부식(Sandblasted and acid etched, SLA)처리된것을 대조군으로 이용하였다. 배양된 조골세포주(MC3T3-E1)를 사용하여 타이태늄 표면 처리에 따른 세포의 증식, 형태변화, 알칼리성 인산분해효소(ALPase) 생산 및 세포면역형광법을 이용한 분화정도를 시간 경과에 따라 관찰하였다. 조골세포증식의 경우 FNIII 7-10 처리군에서 pFN 처리군 및 대조군에 비해 시간경과에 따라 유의성있는 세포수의 증식이 관찰되었으며(p<0.05), ALPase 생성의 경우에도 FNIII 7-10 처리 군에서 아무 처리도 하지 않은 군에 비해 유의성 있게 높은 효소의 생성이 관찰되었다(p<0.05). 주사전자현미경을 이용한 세포의 형태관찰결과 아무 처리도 하지 않은 군에서는 마름모형태를 나타내었으며, 산 부식 처리된 군에서는 세포가 가시모양의 형태를 보인 반면 FN으로 처리된 두 군에서는 세포의 부착 및 펴짐이 매우 발달되어 있는 모습이 관찰되었다. 세포의 분화정도를 관찰하기 위하여 국소부착키나제(focal adhesion kinase, FAK), 및 actin stress fiber의 분포양상을 세포면역형광법을 이용하여 관찰한 결과 FN으로 표면처리된 두 군에서 아무런 처리도 하지않은 군 및 산 부식처리 한 군에 비해 프라크의 발현이 높게 나타났으며 잘 발달된 actin stress fiber의 소견을 나타내었다. 이 실험의 결과들은 gold thiol 법을 이용한 표면처리 후 FN부착을 통한 타이태늄의 표면개질이 조골세포의 부착, 증식 및 분화에 중요한 역할을 담당하여 석회화 정도를 촉진시키는 것을 보여주었으며, 이런 결과들은 더 짧은 FN조각을 이용한 다른 생체재료의 표면개질에 폭 넓게 응용할 수 있으리라 생각된다.

CD34 Monoclonal Antibody-Immobilization on Polyurethane Surface by Poly(PEGA-co-BMA) Coating (PEGA/BMA 공중합체의 코팅을 통해 CD34 단일클론항체가 고정화된 폴리우레탄 표면)

  • Joung, Yoon-Ki;Hwang, In-Kyu;Park, Ki-Dong
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.602-607
    • /
    • 2009
  • A polyurethane (PU) surface enabling in vivo endothelialization via endothelial progenitor cell (EPC) capture was prepared for cardiovascular applications. To introduce CD34 monoclonal antibody (mAb) inducing EPC adhesion onto a surface, poly (poly (ethylene glycol) acrylate-co-butyl methacrylate) and poly (PEGA-co-BMA) were synthesized and then coated on a surface of PU, followed by immobilizing CD34 mAb. $^1H$-NMR analysis demonstrated that poly(PEGA-co-BMA) copolymers with a desired composition were synthesized. Poly(PEGA-co-BMA)-coated PU was much more effective for the immobilization of CD34 mAb, comparing with PEG-grafted PU prepared in our previous study, as demonstrated by that surface density and activity of CD34 mAb increased over 32 times. Physico-chemical properties of modified PU surfaces were characterized by X-ray photoelectron spectroscopy (XPS), water contact angle, and atomic force microscopy (AFM). The results demonstrated that the poly(PEGA-co-BMA) coating was effective for CD34 mAb immobilization and feasible for applying to cardiovascular biomaterials.

Association between Tuberculosis Case and CD44 Gene Polymorphism (결핵 발병과 CD44 유전자 다형성사이의 연관성 연구)

  • Lim, Hee-Seon;Lee, Sang-In;Park, Sangjung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.3
    • /
    • pp.323-328
    • /
    • 2019
  • Tuberculosis, a chronic bacterial infection caused by Mycobacterium tuberculosis (MTB), differs in its status latency and activity because of the characteristics of MTB, immune status of the host, and genetic susceptibility. The host defense mechanism against MTB is caused mainly by interactions between macrophages, T cells, and dendritic cells. CD44 is expressed in activated T cells when infected with MTB and regulates lymphocyte migration. In addition, CD44 mediates leukocyte adhesion to the ECM and plays a role in attracting macrophages and $CD4^+$ T cells to the lungs. Therefore, genetic polymorphism of the CD44 gene will inhibit the host cell immune mechanisms against MTB. This study examined whether the genetic polymorphism of the CD44 gene affects the susceptibility of tuberculosis. A total of 237 SNPs corresponding to the CD44 genes were analyzed using the genotype data of 443 tuberculosis cases and 3,228 healthy controls from the Korean Association Resource (KARE). Of these, 17 SNPs showed a significant association with the tuberculosis case. The most significant SNP was rs75137824 (OR=0.231, CI: 1.51~3.56, $P=1.3{\times}10^{-4}$). In addition, rs10488809, one of the 17 significant SNPs, is important for the tuberculosis outbreak can bind to the JUND and FOS transcription factors and can affect CD44 gene expression. This study suggests that polymorphism of the CD44 gene modulates the host susceptibility to tuberculosis in a variety of ways, resulting in differences in the status of tuberculosis.

Carpinus turczaninowii extract modulates arterial inflammatory response: a potential therapeutic use for atherosclerosis

  • Son, Youn Kyoung;Yoon, So Ra;Bang, Woo Young;Bae, Chang-Hwan;Yeo, Joo-Hong;Yeo, Rimkyo;An, Juhyun;Song, Juhyun;Kim, Oh Yoen
    • Nutrition Research and Practice
    • /
    • v.13 no.4
    • /
    • pp.302-309
    • /
    • 2019
  • BACKGOURND/OBJECTIVES: Vascular inflammation is an important feature in the atherosclerotic process. Recent studies report that leaves and branches of Carpinus turczaninowii (C. turczaninowii) have antioxidant capacity and exert anti-inflammatory effects. However, no study has reported the regulatory effect of C. turczaninowii extract on the arterial inflammatory response. This study therefore investigated modulation of the arterial inflammatory response after exposure to C. turczaninowii extract, using human aortic vascular smooth muscle cells (HAoSMCs). MATERIALS/METHODS: Scavenging activity of free radicals, total phenolic content (TPC), cell viability, mRNA expressions, and secreted levels of cytokines were measured in LPS-stimulated (10 ng/mL) HAoSMCs treated with the C. turczaninowii extract. RESULTS: C. turczaninowii extract contains high amounts of TPC ($225.6{\pm}21.0mg$ of gallic acid equivalents/g of the extract), as well as exerts time-and dose-dependent increases in strongly scavenged free radicals (average $14.8{\pm}1.97{\mu}g/mL$ $IC_{50}$ at 40 min). Cell viabilities after exposure to the extracts (1 and $10{\mu}g/mL$) were similar to the viability of non-treated cells. Cytokine mRNA expressions were significantly suppressed by the extracts (1 and $10{\mu}g/mL$) at 6 hours (h) after exposure. Interleukin-6 secretion was dose-dependently suppressed 2 h after incubation with the extract, at $1-10{\mu}g/mL$ in non-stimulated cells, and at 5 and $10{\mu}g/mL$ in LPS-stimulated cells. Similar patterns were also observed at 24 h after incubation with the extract (at $1-10{\mu}g/mL$ in non-stimulated cells, and at $10{\mu}g/mL$ in the LPS-stimulated cells). Soluble intracellular vascular adhesion molecules (sICAM-1) secreted from non-stimulated cells and LPS-stimulated cells were similarly suppressed in a dose-dependent manner after 24 h exposure to the extracts, but not after 2 h. In addition, sICAM-1 concentration after 24 h treatment was positively related to IL-6 levels after 2 h and 24 h exposure (r = 0.418, P = 0.003, and r = 0.524, P < 0.001, respectively). CONCLUSIONS: This study demonstrates that C. turczaninowii modulates the arterial inflammatory response, and indicates the potential to be applied as a therapeutic use for atherosclerosis.