• Title/Summary/Keyword: cell adhesion activity

Search Result 269, Processing Time 0.032 seconds

Effect of titanium surface roughness on adhesion and differentiation of osteoblasts (티타늄 표면조도가 조골세포의 부착 및 분화에 미치는 영향)

  • Kim, Jung-Sik;Lee, Jae-Kwan;Ko, Sung-Hee;Um, Heung-Sik;Chang, Beom-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.4
    • /
    • pp.839-850
    • /
    • 2005
  • The success of an implant is determined by its integration into the tissue surrounding the biomaterial. Surface roughness is considered to influence the behavior of adherent cells. The aim of this in vitro study was to determine the effect of surface roughness on Saos-2 osteoblast-like cells. Titanium disks blasted with 75 ${/mu}m$ aluminum oxide particles and machined titanium disks were prepared. Saos-2 were plated on the disks at a density of 50,000 cells per well in 48-well dishes. After 1 hour, 1 day, 6 days cell numbers were counted. One day, 6 days after plating, alkaline phosphatase(ALPase) activity was determined. Compared to experimental group, the number of cells was significantly higher on control group. The stimulatory effect of surface roughness on ALPase was more pronounced on the experimental group than on control group. These results demonstrate that surface roughness alters proliferation and differentiation of osteoblasts. The results also suggest that implant surface roughness may play a role in determining phenotypic expression of cells.

A study on the biological characteristics of modified titanium surface (매식체 표면처리에 따른 생물학적 특성에 대한 연구)

  • Kim, Jae-Hyuk;Chung, Chin-Hyung;Lim, Sung-Bin;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.3
    • /
    • pp.453-466
    • /
    • 2008
  • Purpose: The purpose of this research is to study about initial adhesion, proliferation and activation of osteoblast to titanium surface treated with machined, hydroxyapatite coating, resorbable blast material blasting and anodizing method. Material and Methods: After treating the titanium surface of each block with machined, impurities were removed and sterilized. The number of cells attached from cultured osteoblast of respective experimental groups were measured at 1, 4, 7, and 14day and alkaline phosphatase, calcium, and inorganic phosphate concentration of cultured solution was measured. Result: Anodizing group showed the highest rate of cell attachment and proliferation activity. RBM treated group showed the highest increasing on their alkaline phosphatase activity, on the calcium apposition, on inorganic phosphate apposition of 1 and 4 days in cultured osteoblast to compare with other groups. Conclusion: On the basis of these findings, we conclude that surface modification of titanium was profoundly effected on the attachment, proliferation and activation of osteoblast in initial stage osseointegration.

Inhibition of Cell Growth by Anoikis in Various Human Cancer Cell Lines Treated with an Extract of Smilax china L. (토복령 추출물이 처리된 여러 종류의 사람 암세포주에서 아노이키스 세포 사멸에 의한 세포 성장의 억제)

  • Kim, Min-Jae;Kim, Hyeon-Ji;Kim, Moo-Gyeong;Lee, Sung-Ho;Jeon, Byeong-Gyun
    • Journal of Life Science
    • /
    • v.31 no.3
    • /
    • pp.266-279
    • /
    • 2021
  • The present study examined the cytotoxic effects of a Smilax china L. extract (SCLE) in human cancer (A-549, MCF-7, MDA-MB-231, U87-MG, AGS, MKN-74, and SNU-601) and normal MRC-5 fibroblasts, as well as in mesenchymal stem cells derived from dental tissue (DSC). The 50% inhibitory concentration (IC50) values for SCLE were significantly (p<0.05) lower in the cancer cell lines (A-549, MCF-7, MDA-MB-231, U87-MG, AGS, MKN-74 and SNU-601) than in the MRC-5 and DSC cells. Cell growth was significantly (p<0.05) more inhibited in the cancer cell lines treated with 200 ㎍/ml SCLE than in the normal MRC-5 and DSC, and anoikis-like floating cell morphology was observed in the SCLE-treated cancer cells. The cells detached by SCLE treatment were retrieved daily and assayed for viability and telomerase activity. Cells retrieved at 4 days showed significantly decreased viability and telomerase activity (p<0.05), as well as apoptosis-like abnormal morphology, when compared to cells retrieved in the previous 3 days. The ratio of apoptosis and cells in the G1 phase was significantly (p<0.05) increased in the A-549, AGS, and MCF-7 cancer cells treated with SCLE for 4 days compared to untreated controls. However, after SCLE treatment, cell adhesion was not increased by application of an inhibitor of the associated protein kinase (ROCK) that mainly contributes to the increase in cell attachment. This suggests that the cellular detachment by SCLE is probably controlled by a Rho-independent mechanism(s). These observations indicate that SCLE readily induces anoikis in cancer cells and could serve as a potent agent for cancer chemotherapy.

Identification of Endothelial Specific Region in the Intracellular Adhesion Molecule-2 (ICAM2) Promoter of Miniature Pig

  • Jang, Hoon;Jang, Won-Gu;Kim, Dong Un;Kim, Eun-Jung;Hwang, Sung Soo;Oh, Keon Bong;Lee, Jeong-Woong
    • Reproductive and Developmental Biology
    • /
    • v.36 no.3
    • /
    • pp.207-212
    • /
    • 2012
  • The shortage of human organs for transplantation has induced the research on the possibility of using animal as porcine. However, pig to human transplantation as known as xeno-transplantation has major problem as immunorejection. Recently, the solutions of pig to human xenotransplantation are commonly mentioned as having a genetically modification which include alpha 1, 3 galatosyl transferase knockout (GTKO) and immune-suppressing gene transgenic model. Unfortunately, the expression level of transgenic gene is very low activity. Therefore, development of gene overexpression system is the most urgent issue. Also, the tissue specific overexpression system is very important. Because most blood vessels are endothelial cells, establishment of the endothelial-specific promoter is attractive candidates for the introduction of suppressing immunorejection. In this study, we focus the ICAM2 promoter which has endothelial-specific regulatory region. To detect the regulatory region of ICAM2 promoter, we cloned 3.7 kb size mini-pig ICAM2 promoter. We conduct serial deletion of 5' flanking region of mini-pig ICAM2 promoter then selected promoter size as 1 kb, 1.5 kb, 2 kb, 2.5 kb, and 3 kb. To analyze promoter activity, luciferase assay system was conducted among these vectors and compare endothelial activity with epithelial cells. The reporter gene assay revealed that ICAM2 promoter has critical activity in endothelial cells (CPAE) and 1 kb size of ICAM2 promoter activity was significantly increased. Taken together, our studies suggest that mini-pig ICMA2 promoter is endothelial cell specific overexpression promoter and among above all size of promoters, 1 kb size promoter is optimal candidate to overcome the vascular immunorejection in pig to human xenotransplantation.

A Biocompatibility Evaluation of Hydroxyapaite·Titania Surface for Dental Implant (임플란트 적용을 위한 하이드록시아파타이트·이산화티탄 표면의 생체적합성 평가)

  • Kang, Min-Kyung;Bae, Sung-Suk
    • Journal of dental hygiene science
    • /
    • v.16 no.1
    • /
    • pp.70-76
    • /
    • 2016
  • The objective of this study was to fabricate hydroxyapatite (HA) containing titania layer by HA blasting and anodization method to obtain advantages of both methods and evaluated biocompatibility. To fabricate the HA containing titania layer on titanium, HA blasting treatment was performed followed by microarc oxidation (MAO) using the electrolyte solution of 0.04 M ${\beta}$-glycerol phosphate disodium salt n-hydrate and 0.4 M calcium acetate n-hydrate on the condition of various applied voltages (100, 150, 200, 250 V) for 3 minutes. The experimental group was divided according to the surface treatment procedure: SM (simple machined polishing treatment), HA, MAO, HA+MAO 100, HA+MAO 150, HA+MAO 200, HA+MAO 250. The wettability of surface was observed by contact angle measurement. Biocompatibility was evaluated by cell adhesion, and cell differentiation including alkaline phosphatase activity and calcium concentration with MC3T3-E1 cells. The porous titanium oxide containing HA was formed at 150 and 200 V. These surfaces had a more hydrophilic characteristic. Biocompatibility was demonstrated that HA titania composite layer on titanium showed enhanced cell adhesion, and cell differentiation. Therefore, these results suggested that HA containing titania layer on titanium was improved biological properties that could be applied as material for dental implant system.

Characteristics and Immunomodulating Activity of Lactic Acid Bacteria for the Potential Probiotics (Probiotics로서의 젖산균주의 특성 및 면역활성)

  • Seo, Jae-Hoon;Lee, Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.681-687
    • /
    • 2007
  • This study was designed to examine the suitable characteristics of potential probiotic bacteria. Possible probiotic bacteria, including Lactobacillus acidophilus DDS-1, Lb. acidophilus B-3208, Bifidobacterium bifidum KCTC 3357, Lb. plantarum, Leuconostoc mesenteroides ssp. mesenteroides ATCC 8293, and Lactococcus lactis ssp. lactis ATCC 7962 were selected. We then measured their acid and bile tolerances, adhesion properties in the gastrointestinal tract, antimicrobial activity against pathogenic bacteria, and immunomodulation activity. The acid tolerances of Lb. acidophilus DDS-1, Lb. acidophilus B-3208, Lb. plantarum, and Leu. mesenteroides ssp. mesenteroides ATCC 8293, in PBS (pH 2.5) for 2 hr, were high enough that 50% of the inocula survived. The bile tolerances of all bacteria, except Lc. lactis ssp. lactis ATCC 7962, were also observed at a 3% oxgall concentration in MRS broth. The results of the adhesion property assay showed that the total binding affinities of Lb. acidophilus DDS-1, Lb. acidophilus B-3208, and B. bifidum were about three times higher than those of the other bacteria. In testing their antimicrobial activities against pathogens, Lb. acidophilus B-3208, B. bifidum KCTC 3357, and Lb. plantarum inhibited the growth of pathogenic bacteria. For their immunomodulation activity, the cell wall fractions from Lb. acidophilus DDS-1 and Lb. acidophilus B-3208 showed the highest bone marrow cell proliferation activities. However, the cell wall fractions of Lb. acidophilus DDS-1 and B. bifidum, and the cytosol fraction of Lc. lactis ssp. lactis ATCC 7962 showed higher macrophage stimulation activities than those of the other bacteria. Since Lb. acidophilus DDS-1 and Lb. acidophilus B-3208 satisfy the requirements for probiotics, they can be considered suitable probiotic bacteria.

Antioxidant Activities of Perilla frutescens Britton Seed Extract and Its Inhibitory Effects against Major Characteristics of Cancer Cells (들깨 추출물의 항산화 활성과 암세포 기본 특성에 대한 억제 효과)

  • Kim, Sinae;Song, Boram;Ju, Jihyeung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.2
    • /
    • pp.208-215
    • /
    • 2015
  • The aim of the study was to investigate the antioxidant activities of ethanol extract of perilla seed (PSE) and its inhibitory effects against major characteristics of cancer cells, such as unrestricted growth and activated metastasis in vitro. The total polyphenol and flavonoid levels of PSE were 222.6 mg gallic acid equivalent/100 g and 285.7 mg quercetin equivalent/100 g, respectively. The radical scavenging activity and ferric reducing antioxidant power of PSE at concentration of 87.5 to $350{\mu}g/mL$ were 24~45% and 28~62%, respectively. Treatment of HCT116 colorectal carcinoma cells and H1299 non-small cell lung carcinoma cells with PSE dose-dependently inhibited growth by 18~94% (at concentration range of 87.5 to $350{\mu}g/mL$) and completely abolished colony formation (at concentration of $175{\mu}g/mL$). PSE was also effective in inhibiting migration of H1299 cells (by 30~37% at concentration range of 87.5 to $350{\mu}g/mL$) and adhesion of both HCT116 and H1299 cells (by 14~16% at concentration of $350{\mu}g/mL$). These results indicate that PSE exerts antioxidant and anti-cancer activities in vitro. It needs to be determined whether or not similar effects can be reproduced in vivo.

Probiotic Properties of Lactic Acid Bacteria Isolated Traditional Fermented Foods (전통발효식품 유래 유산균의 프로바이오틱스 특성 연구)

  • Kim, Eun-Ji;Jo, Seung-Wha;Kim, Jin-Kyeong;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.697-704
    • /
    • 2019
  • This study performed to investigate the probiotic properties of lactic acid bacteria 200 strains isolated from traditional fermented foods. Based on being higher tolerance to bile salts and showing higher acid resistance, 4 LAB Strains were selected in the screening experiment; Lactobacillus plantarum SRCM 102224, Lb. plantarum SRCM102227, Lb. paracasei SRCM102329, Lb. paracasei SRCM102343. Antibacterial activity against various pathogens, acid and bile salt tolerance, hemolytic phenomenon, cell surface hydrophobicity, and antibiotic resistance were examined. Among the tested strains, SRCM 102343 (95.9%) was highly observed hydrophobicity compared to Lb. rhmanosus GG (13.4%) as control. In this study, the in vitro adhesion properties of 4 strains of LAB was investigated using human intestinal caco-2 cell cultures. SRCM102329 and SRCM102343showed higher adherence to caco-2 cells than Lb. rhamnosus GG. The antibacterial activities of 4 strains LAB were investigated. the 3 strains showing strongly antimicrobial activity against Escherichia coli ATCC10798, Staphylococcus aureus KCCM11593, Listeria invanovii KCTC3444, Bacillus cereus ATCC11778 and S. enterica serovar. Typhi KCTC1926. These results suggest that selected strains have good probiotic potential for application in functional foods.

Anti-metastasis Activity of Black Rice Anthocyanins Against Breast Cancer: Analyses Using an ErbB2 Positive Breast Cancer Cell Line and Tumoral Xenograft Model

  • Luo, Li-Ping;Han, Bin;Yu, Xiao-Ping;Chen, Xiang-Yan;Zhou, Jie;Chen, Wei;Zhu, Yan-Feng;Peng, Xiao-Li;Zou, Qiang;Li, Sui-Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6219-6225
    • /
    • 2014
  • Background: Increasing evidence from animal, epidemiological and clinical investigations suggest that dietary anthocyanins have potential to prevent chronic diseases, including cancers. It is also noteworthy that human epidermal growth factor receptor 2 (ErbB2) protein overexpression or ErbB2 gene amplification has been included as an indicator for metastasis and higher risk of recurrence for breast cancer. Materials and Methods: The present experiments investigated the anti-metastasis effects of black rice anthocyanins (BRACs) on ErbB2 positive breast cancer cells in vivo and in vitro. Results: Oral administration of BRACs (150 mg/kg/day) reduced transplanted tumor growth, inhibited pulmonary metastasis, and decreased lung tumor nodules in BALB/c nude mice bearing ErbB2 positive breast cancer cell MDA-MB-453 xenografts. The capacity for migration, adhesion, motility and invasion was also inhibited by BRACs in MDA-MB-453 cells in a concentration dependent manner, accompanied by decreased activity of a transfer promoting factor, urokinase-type plasminogen activator (u-PA). Conclusions: Together, our results indicated that BRACs possess anti-metastasis potential against ErbB2 positive human breast cancer cells in vivo and in vitro through inhibition of metastasis promoting molecules.

Physicochemical, Antibacterial Properties, and Compatibility of ZnO-NP/Chitosan/β-Glycerophosphate Composite Hydrogels

  • Huang, Pingping;Su, Wen;Han, Rui;Lin, Hao;Yang, Jing;Xu, Libin;Ma, Lei
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.522-530
    • /
    • 2022
  • In this study we aimed to develop novel ZnO-NP/chitosan/β-glycerophosphate (ZnO-NP/CS/β-GP) antibacterial hydrogels for biomedical applications. According to the mass fraction ratio of ZnO-NPs to chitosan, mixtures of 1, 3, and 5% ZnO-NPs/CS/β-GP were prepared. Using the test-tube inversion method, scanning electron microscopy and Fourier-transform infrared spectroscopy, the influence of ZnO-NPs on gelation time, chemical composition, and cross-sectional microstructures were evaluated. Adding ZnO-NPs significantly improved the hydrogel's antibacterial activity as determined by bacteriostatic zone and colony counting. The hydrogel's bacteriostatic mechanism was investigated using live/dead fluorescent staining and scanning electron microscopy. In addition, crystal violet staining and MTT assay demonstrated that ZnO-NPs/CS/β-GP exhibited good antibacterial activity in inhibiting the formation of biofilms and eradicating existing biofilms. CCK-8 and live/dead cell staining methods revealed that the cell viability of gingival fibroblasts (L929) cocultured with hydrogel in each group was above 90% after 24, 48, and 72 h. These results suggest that ZnO-NPs improve the temperature sensitivity and bacteriostatic performance of chitosan/β-glycerophosphate (CS/β-GP), which could be injected into the periodontal pocket in solution form and quickly transformed into hydrogel adhesion on the gingiva, allowing for a straightforward and convenient procedure. In conclusion, ZnO-NP/CS/β-GP thermosensitive hydrogels could be expected to be utilized as adjuvant drugs for clinical prevention and treatment of peri-implant inflammation.