DOI QR코드

DOI QR Code

A Biocompatibility Evaluation of Hydroxyapaite·Titania Surface for Dental Implant

임플란트 적용을 위한 하이드록시아파타이트·이산화티탄 표면의 생체적합성 평가

  • 강민경 (한서대학교 치위생학과) ;
  • 배성숙 (한서대학교 치위생학과)
  • Received : 2015.12.21
  • Accepted : 2016.01.08
  • Published : 2016.02.29

Abstract

The objective of this study was to fabricate hydroxyapatite (HA) containing titania layer by HA blasting and anodization method to obtain advantages of both methods and evaluated biocompatibility. To fabricate the HA containing titania layer on titanium, HA blasting treatment was performed followed by microarc oxidation (MAO) using the electrolyte solution of 0.04 M ${\beta}$-glycerol phosphate disodium salt n-hydrate and 0.4 M calcium acetate n-hydrate on the condition of various applied voltages (100, 150, 200, 250 V) for 3 minutes. The experimental group was divided according to the surface treatment procedure: SM (simple machined polishing treatment), HA, MAO, HA+MAO 100, HA+MAO 150, HA+MAO 200, HA+MAO 250. The wettability of surface was observed by contact angle measurement. Biocompatibility was evaluated by cell adhesion, and cell differentiation including alkaline phosphatase activity and calcium concentration with MC3T3-E1 cells. The porous titanium oxide containing HA was formed at 150 and 200 V. These surfaces had a more hydrophilic characteristic. Biocompatibility was demonstrated that HA titania composite layer on titanium showed enhanced cell adhesion, and cell differentiation. Therefore, these results suggested that HA containing titania layer on titanium was improved biological properties that could be applied as material for dental implant system.

이번 연구의 목적은 하이드록시아파타이트를 이용하여 블라스팅 처리한 뒤 양극산화 방법을 이용하여 하이드록시아파타이트와 이산화티탄이 복합된 표면을 만들고, 이에 대해 세포부착양상을 관찰하고 ALP 활성도와 칼슘 침착량을 측정함으로써 세포 분화능을 평가하여 표면의 생체적합성을 평가하는 데 있다. 이를 위해 실험을 진행한 결과 다음과 같은 결과를 얻었다. 접촉각 분석 결과, 복합처리된 HA+100과 HA+MAO 150은 유의하게 낮은 접촉각을 나타내었다(p<0.05). 세포부착 관찰 결과 연마 처리한 SM 시편에서는 납작한 모양으로 세포가 붙어있는 모습을 관찰할 수 있었으나, 표면 처리된 실험군에서는 세포의 모양이 시편을 따라 좀 더 길게 뻗어 부착된 모습을 관찰할 수 있었다. ALP 활성도 측정 결과 HA+MAO 150과 HA+MAO 200은 1, 2, 3주 모든 기간에서 가장 높은 ALP 활성도를 나타내었다(p>0.05). 칼슘양 측정 결과 HA+MAO 150 과 HA+MAO 200은 1, 2, 3주 모든 기간에서 가장 많은 칼슘양을 나타내었다(p<0.05). 따라서 하이드록시아파타이트 이산화티탄이 복합 코팅된 표면은 높은 표면에너지를 가지며 우수한 세포활성도를 나타내어 치과용 임플란트 표면으로 유용하게 사용될 수 있을 것이라고 생각된다.

Keywords

References

  1. Han JH, Kim KE: Comparion of expectation and satisfaction of implant patients in pre-post implant therapy. J Dent Hyg Sci 11: 121-127, 2011.
  2. Liu X, Chu PK, Ding C: Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R-Rep 47: 49-121, 2004. https://doi.org/10.1016/j.mser.2004.11.001
  3. Coelho PG, Granjeiro JM, Romanos GE, et al.: Basic research methods and current trends of dental implant surfaces. J Biomed Mater Res B Appl Biomater 88: 579-596, 2009.
  4. Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y: Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 23: 844-854, 2007. https://doi.org/10.1016/j.dental.2006.06.025
  5. Ishikawa K, Miyamoto Y, Nagayama M, Asaoka K: Blast coating method: new method of coating titanium surface with hydroxyapatite at room temperature. J Biomed Mater Res 38: 129-134, 1997. https://doi.org/10.1002/(SICI)1097-4636(199722)38:2<129::AID-JBM7>3.0.CO;2-S
  6. Kang MK, Moon SK, Kim KN: An evaluation of antibacterial titanium surface for dental implant. J Dent Hyg Sci 11: 405-410, 2011.
  7. O'Hare P, Meenan BJ, Burke GA, Byrne G, Dowling D, Hunt JA: Biological responses to hydroxyapatite surfaces deposited via a co-incident microblasting technique. Biomaterials 31: 515-522, 2010. https://doi.org/10.1016/j.biomaterials.2009.09.067
  8. Ishizawa H, Ogino M: Formation and characterization of anodic titanium oxide films containing Ca and P. J Biomed Mater Res 29: 65-72, 1995. https://doi.org/10.1002/jbm.820290110
  9. Yang B, Uchida M, Kim HM, Zhang X, Kokubo T: Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials 25: 1003-1010, 2004. https://doi.org/10.1016/S0142-9612(03)00626-4
  10. Ishizawa H, Ogino M: Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment. J Biomed Mater Res 29: 1071-1079, 1995. https://doi.org/10.1002/jbm.820290907
  11. Kang MK, Moon SK, Kwon JS, Kim KM, Kim KN: Characterization of hydroxyapatite containing a titania layer formed by anodization coupled with blasting. Acta Odontol Scand 72: 989-998, 2014. https://doi.org/10.3109/00016357.2014.933484
  12. Elias CN, Oshida Y, Lima JHC, Muller CA: Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque. J Mech Behav Biomed Mater 1: 234-242, 2008. https://doi.org/10.1016/j.jmbbm.2007.12.002
  13. Bico J, Thiele U, Quere D: Wetting of textured surfaces. Colloids Surf A 206: 41-46, 2002. https://doi.org/10.1016/S0927-7757(02)00061-4
  14. Zhu X, Chen J, Scheideler L, Reichl R, Geis-Gerstorfer J: Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials 25: 4087-4103, 2004. https://doi.org/10.1016/j.biomaterials.2003.11.011
  15. Park JW, Jang JH, Lee CS, Hanawa T: Osteoconductivity of hydrophilic microstructured titanium implants with phosphate ion chemistry. Acta Biomater 5: 2311-2321, 2009. https://doi.org/10.1016/j.actbio.2009.02.026
  16. Macak JM, Tsuchiya H, Ghicov A, et al.: TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mat Sci 11: 3-18, 2007. https://doi.org/10.1016/j.cossms.2007.08.004
  17. Anselme K: Osteoblast adhesion on biomaterials. Biomaterials 21: 667-681, 2000. https://doi.org/10.1016/S0142-9612(99)00242-2
  18. Beck GR: Inorganic phosphate as a signaling molecule in osteoblast differentiation. J Cell Biochem 90: 234-243, 2003. https://doi.org/10.1002/jcb.10622
  19. Kieswetter K, Schwartz Z, Hummert TW, et al.: Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. J Biomed Mater Res 32: 55-63, 1996. https://doi.org/10.1002/(SICI)1097-4636(199609)32:1<55::AID-JBM7>3.0.CO;2-O
  20. Boyan BD, Batzer R, Kieswetter K, et al.: Titanium surface roughness alters responsiveness of MG63 osteoblast-like cells to $1{\alpha},25-(OH)_2D_3$. J Biomed Mater Res 39: 77-85, 1998. https://doi.org/10.1002/(SICI)1097-4636(199801)39:1<77::AID-JBM10>3.0.CO;2-L
  21. Lee SI: The role of NFATC1 on osteoblastic differentiation in human periodontal ligament cells. J Dent Hyg Sci 15: 488-494, 2015. https://doi.org/10.17135/jdhs.2015.15.4.488
  22. Giordano C, Sandrini E, Busini V, et al.: A new chemical etching process to improve endosseous implant osseointegration: In vitro evaluation on human osteoblast-like cells. Int J Artif Organs 29: 772-780, 2006. https://doi.org/10.1177/039139880602900807
  23. Le Guehennec L, Lopez-Heredia MA, Enkel B, Weiss P, Amouriq Y, Layrolle P: Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomater 4: 535-543, 2008. https://doi.org/10.1016/j.actbio.2007.12.002
  24. Lian JB, Stein GS: Concepts of osteoblast growth and differentiation: basis for modulation of bone cell development and tissue formation. Crit Rev Oral Biol Med 3: 269-305, 1992. https://doi.org/10.1177/10454411920030030501
  25. Beck GR: Inorganic phosphate as a signaling molecule in osteoblast differentiation. J Cell Biochem 90: 234-243, 2003. https://doi.org/10.1002/jcb.10622
  26. Anderson H: Matrix vesicles and calcification. Curr Rheumatol Rep 5: 222-226, 2003. https://doi.org/10.1007/s11926-003-0071-z
  27. Chehroudi B, McDonnell D, Brunette DM: The effects of micromachined surfaces on formation of bonelike tissue on subcutaneous implants as assessed by radiography and computer image processing. J Biomed Mater Res 34: 279-290, 1997. https://doi.org/10.1002/(SICI)1097-4636(19970305)34:3<279::AID-JBM2>3.0.CO;2-H