• 제목/요약/키워드: cell motility

검색결과 347건 처리시간 0.021초

Trichomonas vaginalis Metalloproteinase Induces mTOR Cleavage of SiHa Cells

  • Quan, Juan-Hua;Choi, In-Wook;Yang, Jung-Bo;Zhou, Wei;Cha, Guang-Ho;Zhou, Yu;Ryu, Jae-Sook;Lee, Young-Ha
    • Parasites, Hosts and Diseases
    • /
    • 제52권6호
    • /
    • pp.595-603
    • /
    • 2014
  • Trichomonas vaginalis secretes a number of proteases which are suspected to be the cause of pathogenesis; however, little is understood how they manipulate host cells. The mammalian target of rapamycin (mTOR) regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. We detected various types of metalloproteinases including GP63 protein from T. vaginalis trophozoites, and T. vaginalis GP63 metalloproteinase was confirmed by sequencing and western blot. When SiHa cells were stimulated with live T. vaginalis, T. vaginalis excretory-secretory products (ESP) or T. vaginalis lysate, live T. vaginalis and T. vaginalis ESP induced the mTOR cleavage in both time-and parasite load-dependent manner, but T. vaginalis lysate did not. Pretreatment of T. vaginalis with a metalloproteinase inhibitor, 1,10-phenanthroline, completely disappeared the mTOR cleavage in SiHa cells. Collectively, T. vaginalis metallopeptidase induces host cell mTOR cleavage, which may be related to survival of the parasite.

대황(大黃)이 흰쥐의 위점막 손상에 미치는 영향 (Effects of Rhei Rhizoma on Gastric Ulcer in Sprague-Dawley Rats)

  • 김범회
    • 동의생리병리학회지
    • /
    • 제25권1호
    • /
    • pp.71-77
    • /
    • 2011
  • Gastric ulcer has multifactorial etiology, and the development of ulcer is known to be caused by gastric acidity, pepsin secretion, gastric motility and gastric mucosal blood flow. The ulcer results from the tissue necrosis and apoptotic cell death triggered by mucosal ischemia, free radical formation and cessation of nutrient delivery. The gastric mucosa is usually exposed to a wide range of aggressive insults, and has developed efficient mechanisms to repair tissue injury. The apoptotic process of gastric mucosa is triggered by the induction of such proapoptotic gene expression, such as BAX. The Bcl-2 family of proteins plays a pivotal role in the regulation of apoptosis. The maintenance of gastric mucosa integrity depends upon the ratio between cell proliferation and cell death. Stress-inducing factors may affect Bcl-2/BAX ratio and thus the rate of apoptosis through modulation of the expression of both proteins depends upon the experimental model. In addition to the regulation of apoptosis, new vessels have to be generated in order to ensure an adequate supply of oxygen and nutrients to the healing gastric mucosa. This events are regulated by several factors. Among them, such polypeptide growth factors, such as vascular endothelial growth factor (VEGF) regulates essential cell functions involved in tissue healing including cell proliferation and differentiation. The purpose of this study was carried to investigate whether Rhei Rhizoma administration might protect apoptotic cell death and promote angiogenesis in gastric mucosa. Sprague-Dawley rats were randomly divided into 4 groups; normal, saline, cimetidine and Rhei Rhizoma-treated group. The saline, cimetidine and Rhei Rhizoma extracts were orally administrated to each group and gastric ulcer was induced by HCl-EtOH solution. After 1 hour, the stomachs were collected for histological observation and immunohistochemistry. In results, Rhei Rhizoma proves to promote to heal wound in gastric ulcer in conclusion and the significant changes of BAX, Bcl-2 and VEGF quantity in gastric mucosa were observed. These results suggest that Rhei Rhizoma extract may promote incision wound healing and has protective effects on gastric ulcer in rats.

암의 중심체 증폭 이해를 통한 표적 항암제 개발 (Understanding centrosome amplification in cancer: A pathway toward precision-targeted cancer drug development)

  • 김태경
    • 생명과학회지
    • /
    • 제33권11호
    • /
    • pp.950-955
    • /
    • 2023
  • 세포 분열은 생명체의 생존과 발달에 필수적인 과정이며, 이 과정에서 복제된 염색체가 오류 없이 정확하게 두 개로 분리되는 것이 중요하다. 중심체(centrosome)는 미세소관 형성 센터(microtubule-organizing center, MTOC)를 구성하는 핵심 기관이며, MTOC는 세포 분열과정에서 방추체를 구성하는 미세소관을 형성한다. 또한 중심체는 세포에서의 신호 경로와 운동성에 관여한다. 정상적인 세포에서 중심체는 한개씩 존재하지만, S 기에서 2개로 복제되어 세포의 양쪽 끝으로 이동하며, MTOC로부터 생성된 방추사는 복제된 염색체와 결합하여 염색체를 양쪽 끝으로 이동시킨다. 이후 세포는 두 개로 나눠져 세포 분열을 종결한다. 하지만 중심체가 정상적인 숫자보다 많은 중심체 증폭(centrosome amplification) 현상은 암세포에서 흔하게 발생하며, 이것은 염색체 불안정성(chromosomal instability, CIN)을 일으키는 원인이 될 수 있다. 본 논문에서는 중심체 복제 과정에 대해 알아보고, 이 과정에서 PLK4의 역할에 대해 알아본다. 또한 중심체 증폭이 일으킬 수 있는 결과에 대해 알아보고, 중심체 증폭의 핵심 인산화효소인 PLK4를 저해하는 약물이 어떻게 특정 종류의 암세포를 치료하는 데 있어 기여할 수 있는지 고찰해 보고자 한다.

제주산 참다래가 Loperamide로 유도된 변비에 미치는 영향 (Effects of the Actindia chinensis on Loperamide-induced Constipation in Rat)

  • 김동건;진영건;진주연;김상철;김성철;한창훈;이영재
    • 한국자원식물학회지
    • /
    • 제24권1호
    • /
    • pp.61-68
    • /
    • 2011
  • 참다래 동결건조물을 2.5%, 5% 농도로 사료와 혼합하여 실험동물에 투여하고 실험 5일간 loperamide(2 mg/kg/day, s.c.)로 변비를 유도하여 참다래의 변비치료 및 예방 효과를 측정하였다. Lopermide를 단독 투여한 군은 정상대조군과 비교하여 변의 개수 및 중량이 유의적으로 감소하였으며 원위 결장 내 변 잔류의 증가 및 cecocolonic segment의 무게가 증가하였다. 참다래 동결건조물 및 loperamide를 투여한 군은 loperamide를 단독 투여한 군과 비교하여 변의 개수 및 중량이 유의적으로 증가하였으며 원위 결장 내 잔류 변 및 cecocolonic segment의 무게도 감소하였다. 이러한 결과는 참다래가 in vivo에서 변비 개선 효과가 있음을 보여준다. 변의 수분 함량에서도 loperamide로 변비를 유발시킨 군에서 감소하는 경향을 보였고 참다래 동결건조물 투여군에서 농도 의존적으로 증가하는 것을 확인 할 수 있었다. 조직학적 검사에서도 참다래 동결건조물 투여군의 원위 대장관에서 crypt cell내 점액의 증가와 장관내 분변의 점액질의 증가도 관찰되었다. In vitro 실험결과, 회장 적출 절편에서 참다래 동결건조물(2.5 mg/ml)을 전 처리 시 loperamide에 의한 장력과 진폭 억제가 부분적으로 차단되었으며 이러한 결과는 참다래 동결건조물의 변비 개선효과가 장의 운동성 촉진과 대장관 내 점액분비 증가에 의한 대장관 내용물의 이동성증가와 관련이 있음을 시사한다.

Differential Wnt11 Expression Related to Wnt5a in High- and Low-grade Serous Ovarian Cancer: Implications for Migration, Adhesion and Survival

  • Jannesari-Ladani, Farnaz;Hossein, Ghamartaj;Izadi-Mood, Narges
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권3호
    • /
    • pp.1489-1495
    • /
    • 2014
  • Wnt is a powerful signaling pathway that plays a crucial role in cell fate determination, survival, proliferation and motility during development, in adult tissues and cancer. The aims of the present study were three fold: i) to assess Wnt11 immunoexpression and its possible relationship with Wnt5a in high- and low-grade human serous ovarian cancer (HGSC and LGSC) specimens; ii) to assess Wnt11 expression levels in Wnt5a overexpressing SKOV-3 cells; iii) to reveal the role of Wnt11 in viability, adhesion, migration and invasion of SKOV-3 cells using recombinant human Wnt11 (rhWnt11). Immunohistochemistry revealed a significant difference in Wnt11 expression between HGSC and LGSC groups (p=0.001). Moreover, a positive correlation was observed between Wnt5a and Wnt11 expression in the HGSC (r=0.713, p=0.001), but not the LGSC group. The expression of Wnt11 was decreased by 35% in Wnt5a overexpressing cells (SKOV-3/Wnt5a) compared to mock controls. Similarly Wnt11 expression levels were decreased by 47% in the presence of exogenous Wnt5a compared to untreated cells. In the presence of rhWnt11, 31% increased cell viability (p<0.001) and 21% increased cell adhesion to matrigel (p<0.01) were observed compared to control. Cell migration was increased by 1.6-fold with rhWnt11 as revealed by transwell migration assay (p<0.001). However, 45% decreased cell invasion was observed in the presence of rhWnt11 compared to control (p<0.01). Our results may suggest that differential Wnt11 immunoexpression in HGSC compared to LGSC could play important roles in serous ovarian cancer progression and may be modulated by Wnt5a expression levels.

A Fermented Ginseng Extract, BST204, Inhibits Proliferation and Motility of Human Colon Cancer Cells

  • Park, Jong-Woo;Lee, Jae-Cheol;Ann, So-Ra;Seo, Dong-Wan;Choi, Wahn-Soo;Yoo, Young-Hyo;Park, Sun-Kyu;Choi, Jung-Young;Um, Sung-Hee;Ahn, Seong-Hoon;Han, Jeung-Whan
    • Biomolecules & Therapeutics
    • /
    • 제19권2호
    • /
    • pp.211-217
    • /
    • 2011
  • Panax ginseng CA Meyer, a herb from the Araliaceae, has traditionally been used as a medicinal plant in Asian countries. Ginseng extract fermented by ginsenoside-${\beta}$-glucosidase treatment is enriched in ginsenosides such as Rh2 and Rg3. Here we show that a fermented ginseng extract, BST204, has anti-proliferative and anti-invasive effects on HT-29 human colon cancer cells. Treatment of HT-29 cells with BST204 induced cell cycle arrest at $G_1$ phase without progression to apoptosis. This cell cycle arrest was accompanied by up-regulation of tumor suppressor proteins, p53 and p21$^{WAF1/Cip1}$, down-regulation of the cyclin-dependent kinase/cyclins, Cdk2, cyclin E, and cyclin D1 involved in $G_1$ or $G_1/S$ transition, and decrease in the phosphorylated form of retinoblastoma protein. In addition, BST204 suppressed the migration of HT-29 cells induced by 12-O-tetradecanoylphorbol-13-acetate, which correlated with the inhibition of metalloproteinase-9 activity and extracellular signal-regulated kinase activity. The effects of BST204 on the proliferation and the invasiveness of HT-29 cells were similar to those of Rh2. Taken together, the results suggest that fermentation of ginseng extract with ginsenoside-${\beta}$-glucosidase enhanced the anti-proliferative and the anti-invasive activity against human colon cancer cells and these anti-tumor effects of BST204 might be mediated in part by enriched Rh2.

Network Analyses of Gene Expression following Fascin Knockdown in Esophageal Squamous Cell Carcinoma Cells

  • Du, Ze-Peng;Wu, Bing-Li;Xie, Jian-Jun;Lin, Xuan-Hao;Qiu, Xiao-Yang;Zhan, Xiao-Fen;Wang, Shao-Hong;Shen, Jin-Hui;Li, En-Min;Xu, Li-Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권13호
    • /
    • pp.5445-5451
    • /
    • 2015
  • Fascin-1 (FSCN1) is an actin-bundling protein that induces cell membrane protrusions, increases cell motility, and is overexpressed in various human epithelial cancers, including esophageal squamous cell carcinoma (ESCC). We analyzed various protein-protein interactions (PPI) of differentially-expressed genes (DEGs), in fascin knockdown ESCC cells, to explore the role of fascin overexpression. The node-degree distributions indicated these PPI sub-networks to be characterized as scale-free. Subcellular localization analysis revealed DEGs to interact with other proteins directly or indirectly, distributed in multiple layers of extracellular membrane-cytoskeleton/ cytoplasm-nucleus. The functional annotation map revealed hundreds of significant gene ontology (GO) terms, especially those associated with cytoskeleton organization of FSCN1. The Random Walk with Restart algorithm was applied to identify the prioritizations of these DEGs when considering their relationship with FSCN1. These analyses based on PPI network have greatly expanded our comprehension of the mRNA expression profile following fascin knockdown to future examine the roles and mechanisms of fascin action.

Anti-metastatic Potential of Ethanol Extract of Saussurea involucrata against Hepatic Cancer in vitro

  • Byambaragchaa, Munkhzaya;de la Cruz, Joseph;Yang, Seung Hak;Hwang, Seong-Gu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권9호
    • /
    • pp.5397-5402
    • /
    • 2013
  • The rates of morbidity and mortality of hepatocellular carcinoma (HCC) have not lessened because of difficulty in treating tumor metastasis. Mongolian Saussurea involucrata (SIE) possesses various anticancer activities, including apoptosis and cell cycle arrest. However, detailed effects and molecular mechanisms of SIE on metastasis are unclear. Thus, the present study was undertaken to investigate antimetastatic effects on HCC cells as well as possible mechanisms. Effects of SIE on the growth, adhesion, migration, aggregation and invasion of the SK-Hep1 human HCC cell line were investigated. SIE inhibited cell growth of metastatic cells in dose- and time-dependent manners. Incubation of SK-Hep1 cells with $200-400{\mu}g/mL$ of SIE significantly inhibited cell adhesion to gelatin-coated substrate. In the migration (wound healing) and aggregation assays, SIE treated cells showed lower levels than untreated cells. Invasion assays revealed that SIE treatment inhibited cell invasion capacity of HCC cells substantially. Quantitative real time PCR showed inhibitory effects of SIE on MMP-2/-9 and MT1-MMP mRNA levels, and stimulatory effects on TIMP-1, an inhibitor of MMPs. The present study not only demonstrated that invasion and motility of cancer cells were inhibited by SIE, but also indicated that such effects were likely associated with the decrease in MMP-2/-9 expression of SK-Hep1 cells. From these results, it was suggested that SIE could be used as potential anti-tumor agent.

아연결핍된 단핵구 U937 Cell Line에 있어서의 유전자 발현 탐색 : cDNA Microarray 기법 이용 (Gene Expression in Zn-deficient U937 Cell Line : Using cDNA Microarray)

  • Beattie, John H.;Trayhurn, Paul
    • Journal of Nutrition and Health
    • /
    • 제35권10호
    • /
    • pp.1053-1059
    • /
    • 2002
  • In post-genome period, the technique for identifying gene expression has been changed to high throughput screening. In the field of molecular nutrition, the need for this technique to clarify molecular function of the specific nutrient is essential. In this study, we have tested the zinc-regulated gene expression in zinc-deficient U937 cells, using cDNA microarray which is the cutting-edge technique to screen large numbers of gene expression simultaneously. The study result can be used for the preliminary gene screening data for clarifying, using monocyte U937 cell line, molecular Zn aspect in atherosclerosis. U937 cells were cultured in Zn-adequate (control, 12 $\mu$M Zn) or Zn-deficient (experimental, 0 $\mu$M Zn) ESMI media during 2 days, respectively. Cells were harvested and RNA was extracted. Total RNA was reverse-transcriptinized and synthesized cDNA probe labeled with Cy-3. fluorescent labeled cDNA probe was applied to microarray slide for hybridization slide, and after then, the slide was scanned using fluorescence scanner. ‘Highly expressed genes’ in Zn-deficient U937 cells, comparing to Zn-adequate group, are mainly about the genes for motility protein, immune system protein, oncogene and tumor suppressor and ‘Less highly expressed genes’ are about the genes for transcription, apoptosis associated protein, cell cycle, and several basic transcription factors. The results of this preliminary study imply the effectiveness of cDNA microarray for expression profiling of a singly nutrient deficiency, specially Zn. Furthur study, using tailored-cDNA array and capillary endothelial cell lines, would be beneficial to clarify molecular Zn function, more in detail.

느린 전단흐름에서 편모운동에 의한 대장균의 거동 특성 (Swimming Motion of Flagellated Bacteria Under Low Shear Flow Conditions)

  • 안용태;신항식
    • 대한환경공학회지
    • /
    • 제33권3호
    • /
    • pp.191-195
    • /
    • 2011
  • 본 연구의 목적은 낮은 전단흐름조건에서 편모 운동성이 박테리아의 거동 특성에 미치는 영향을 파악하는데 있다. 대다수의 미생물은 편모를 이용하여 수용액 내에서 운동할 수 있는 능력을 가지고 있으며, 이러한 운동성은 수계나 수처리 시스템에서 미생물의 거동에 있어서 중요한 역할을 한다. 그러나 현재까지 병원성 미생물의 이동 현상과 관련된 연구에서 편모에 의한 운동성은 거의 고려되지 않고 있는 실정이다. 본 연구에서는 미세유체장치를 이용하여 전단흐름이 낮은 조건에서 E. coli의 거동 특성을 파악하고자 하였다. 실험을 통하여 유속이 작은 경우에 E. coli는 포물선의 형태의 궤적들을 그리며 이동하는 것을 알 수 있었으며, 벽면 근처에서는 상류로 헤엄쳐 올라간다는 것을 파악하였다. 또한 유속과 종횡비(aspect ratio)에 따른 궤적의 변화를 분석하였는데, 유속이 작을수록 포물선 형태의 궤적을 그리게 되며, 길이가 짧을수록 보다 작은 회전 반경을 그리며 운동하는 것을 관찰할 수 있었다.