• Title/Summary/Keyword: cecal flora

검색결과 6건 처리시간 0.017초

태독이 장내 세균총에 미치는 영향을 규명하기 위한 임신쥐의 스트레스 및 식이에 따른 신생쥐의 장내 세균총 및 IgA 농도 분석 시험 (Study on Intestinal Flora and IgA Concentration Analysis in Newborn Mice by Stress and Diet in Pregnant Mice to Investigate the Effect of Taedok on the Intestinal Flora)

  • 정지은;최유민;정민정
    • 대한한방소아과학회지
    • /
    • 제35권4호
    • /
    • pp.96-111
    • /
    • 2021
  • Objectives The purpose of this study is to look for pathological mechanism of disease development caused by Taedok, by studying whether stress and diet in pregnant ICR mice affect the intestinal flora and IgA (Immunoglobulin A) concentration. Methods The mice were divided into 4 groups (n=5 per group) based on the concept of Taedok: the control group (G1), stress group (G2), capsaicin diet group (G3), high fat diet group (G4). We collected and analyzed intestinal flora from maternal feces and cecal flora from neonatal mice by group. Then, IgA concentration in the maternal feces and sIgA (secretory Immunoglobulin A) concentration in the cecal contents of newborn mice were analyzed. In addition, serum corticosterone was analyzed before and after stress application. Results Changes in maternal intestinal flora and neonatal mice cecal flora by stress and diet were observed. There were no significant changes in the IgA concentration in maternal feces and the sIgA concentration in the cecal contents of neonatal mice. No significant changes compared to the control group were observed between groups before and after applying stress. However, when comparing within one subject, a significant increase was confirmed after stress application in the stress group (G2). Conclusions Based on the results, we observed stress and diet in pregnant mice affect the intestinal flora of maternal and neonatal. We were able to interpret the pathological mechanism of Taedok based on the principle of interaction between mother and newborn intestinal flora.

Hepatoprotective Effects of Potato Peptide against D-Galactosamine-induced Liver Injury in Rats

  • Ohba, Kiyoshi;Han, Kyu-Ho;Liyanage, Ruvini;Nirei, Megumi;Hashimoto, Naoto;Shimada, Ken-ichiro;Sekikawa, Mitsuo;Sasaki, Keiko;Lee, Chi-Ho;Fukushima, Michihiro
    • Food Science and Biotechnology
    • /
    • 제17권6호
    • /
    • pp.1178-1184
    • /
    • 2008
  • The effect of some peptides on hepatoprotection and cecal fermentation against D-galactosamine (GalN)-treated rats was studied. In acute hepatic injury tests, serum alanine aminotransferase (ALT), aspartate aminotranferase (AST), and lactic dehydrogenase (LDH) activities were remarkably increased after injection of GalN. However, potato and soybean peptides significantly decreased GalN-induced alterations of serum ALT and AST activities. Hepatic thiobarbituric acid-reactive substance (TBARS) concentration in GalN-treated groups fed potato and soybean peptides was significantly lower than that in GalN-treated control group. Hepatic glutathione level in the GalN-treated group fed potato peptide was significantly higher than that in GalN-treated control group. Furthermore, cecal Lactobacillus level in GalN-treated groups fed potato and soybean peptides was significantly higher than that in GalN-treated control group, and cecal short-chain fatty acid concentrations in GalN-treated group fed potato peptide were significantly higher than in GalN-treated control group. These results indicate that potato peptide may improve the cecal fermentation and prevent the GalN-induced liver damage in rats.

L-arginine and N-carbamoylglutamic acid supplementation enhance young rabbit growth and immunity by regulating intestinal microbial community

  • Sun, Xiaoming;Shen, Jinglin;Liu, Chang;Li, Sheng;Peng, Yanxia;Chen, Chengzhen;Yuan, Bao;Gao, Yan;Meng, Xianmei;Jiang, Hao;Zhang, Jiabao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권1호
    • /
    • pp.166-176
    • /
    • 2020
  • Objective: An experiment was conducted to determine the effects of L-arginine (L-Arg) and N-carbamoylglutamic acid (NCG) on the growth, metabolism, immunity and community of cecal bacterial flora of weanling and young rabbits. Methods: Eighteen normal-grade male weanling Japanese White rabbits (JWR) were selected and randomly divided into 6 groups with or without L-Arg and NCG supplementation. The whole feeding process was divided into weanling stage (day 37 to 65) and young stage (day 66 to 85). The effects of L-Arg and NCG on the growth, metabolism, immunity and development of the ileum and jejunum were compared via nutrient metabolism experiments and histological assessment. The different communities of cecal bacterial flora affected by L-Arg and NCG were assessed using high-throughput sequencing technology and bioinformatics analysis. Results: The addition of L-Arg and NCG enhanced the growth of weanling and young rabbit by increasing the nitrogen metabolism, protein efficiency ratio, and biological value, as well as feed intake and daily weight gain. Both L-Arg and NCG increased the concentration of immunoglobulin A (IgA), IgM, and IgG. NCG was superior to L-Arg in promoting intestinal villus development by increasing villus height, villus height/crypt depth index, and reducing the crypt depth. The effects of L-Arg and NCG on the cecal bacterial flora were mainly concentrated in different genera, including Parabacteroides, Roseburia, dgA-11_gut_group, Alistipes, Bacteroides, and Ruminococcaceae_UCG-005. These bacteria function mainly in amino acid transport and metabolism, energy production and conversion, lipid transport and metabolism, recombination and repair, cell cycle control, cell division, and cell motility. Conclusion: L-Arg and NCG can promote the growth and immunity of weanling and young JWR, as well as effecting the jejunum and ileum villi. L-Arg and NCG have different effects in the promotion of nutrient utilization, relieving inflammation and enhancing adaptability through regulating microbial community.

계절에 따른 일반 농가와 복지 농가 육계의 맹장 내 미생물 균총에 미치는 영향 (Effects of Season Differences on the Cecal Microbiome of Broiler at Conventional Farms and Welfare System Farms)

  • 김준식;박설화;김민지;심성훈;강환구;정진영
    • 한국가금학회지
    • /
    • 제51권2호
    • /
    • pp.73-82
    • /
    • 2024
  • 육계의 장내 미생물 균총은 전반적인 건강을 유지하고 사육 생산성에 영향을 미치는 중요한 요소이다. 하지만 한국의 여름철 고온 환경과 밀집 사육 시스템은 육계에게 스트레스를 유발하여 장내 미생물 균총의 불균형을 유발할 수 있다. 이러한 배경으로 본 연구는 한국의 복지형 농가와 일반 농가에서 봄과 여름철 육계의 장내 미생물 균총을 비교분석하기 위해 수행되었다. 19일령 육계 총 31수를 공시하였으며, 봄철 일반농가(n = 8); 여름철 일반농가(n = 8); 봄철 복지농가(n = 7); 여름철 복지농가(n = 8)에 각각 할당되었다. 계절 간 일반 농가와 복지 농가 육계의 맹장내 미생물 조성 차이를 분석하기 위해 Beta diversity 분석을 수행하였으며, 일반 농가와 복지 농가 모두 맹장내 미생물 구성이 뚜렷한 차이를 보였다. 일반 농가에서 맹장내 미생물 균총 분포를 문 수준에서 분석한 결과, Bacteroidetes의 비율은 봄철이 여름철과 비교해 높은 풍부도를 보였다. 속 수준에서 분석한 결과, 봄철 육계는 Bacteroides와 Alistipes의 비율이 여름철과 비교해 높은 풍부도를 보였다. 복지 농가에서 맹장내 미생물 균총 분포를 문 수준에서 분석한 결과, 봄철과 여름철 모두에서 Firmicutes와 Bacteroidota가 우점하였다. 하지만, LEfSe 분석 결과, 미생물 균총 구성의 차이는 일반 농가와 비교해 상대적으로 적었다. 결론적으로 우리의 결과는 고온 스트레스가 육계의 맹장내 미생물 균총에 악영향을 줄 수 있지만, 주거 환경의 개선이 고온 스트레스의 영향을 완화시켜줄 수 있음을 시사한다.

페룰산의 사료 내 첨가가 육계 생산성, 도체 특성, 혈중 성분 및 장내 균총에 미치는 영향 (Effects of Ferulic Acid-Based Preparation on Performance, Carcass Characteristics, Blood Profiles, and Intestinal Microflora of Broiler Chicks)

  • 김용란;이상우;김은집
    • 한국가금학회지
    • /
    • 제49권1호
    • /
    • pp.45-51
    • /
    • 2022
  • 본 연구에서 페룰산이 함유된 미강추출물의 첨가가 육계생산성에 미치는 영향에서 일당 증체량과 사료요구율을 개선시켰다. 일당 증체량은 육계 전기(1~21일령), 육계 후기(22~30일령), 전체 사육기간(1~30일령) 모든 사육기간에서 RBEX을 첨가한 모든 처리구가 대조구에 비해 유의성 있게 높은 것을 확인할 수 있었다(P<0.05). 사료요구율에서도 모든 사육기간에서 페룰산을 첨가한 모든 처리구가 대조구에 비해 유의성 있게 개선되는 것을 확인할 수 있었고(P<0.05), 혈중 성분 중 총 콜레스테롤과 혈중 글로블린 수치에 유의차 있는 영향을 미치는 것을 확인하였고(P<0.05), 장내균총 중 페룰산을 처리한 처리구가 대조구에 비하여 유산생성균의 균수가 유의하게 증가하는 결과를 나타냈으며(P<0.05), coliforms에서는 대조구에 비해서 페룰산을 첨가한 처리구에서 유의하게 감소하는 결과가 나타냈다(P<0.05). 이상의 결과로 보아 페룰산이 함유된 미강 추출물의 첨가는 육계의 성장촉진 등 생산성이 개선되는 것으로 나타나 항생제 대체제로의 이용가능성이 시사되었으며, 체내 대사생리 및 근육내 물리적 특성에 부정적인 영향 없이 가식성 근육 내 지질산화를 유의하게 억제하는 결과를 나타내어 보존성을 개선한 기능성 양계산물의 생산에 도움을 줄 것으로 사료된다.

Cefoperazone(T-1551)의 약리학적 연구 (Pharmacological Studies of Cefoperazone(T-1551))

  • 임정규;홍사악;박찬웅;김명석;서유헌;신상구;김용식;김혜원;이정수;장기철;이상국;장우현;김익상
    • 대한약리학회지
    • /
    • 제16권2호
    • /
    • pp.55-70
    • /
    • 1980
  • The pharmacological and microbiological studies of Cefoperazone (T-1551, Toyama Chemical Co., Japan) were conducted in vitro and in vivo. The studies included stability and physicochemical characteristics, antimicrobial activity, animal and human pharmacokinetics, animal pharmacodynamics and safety evaluation of Cefoperazone sodium for injection. 1) Stability and physicochemical characteristics. Sodium salt of cefoperazone for injection had a general appearance of white crystalline powder which contained 0.5% water, and of which melting point was $187.2^{\circ}C$. The pH's of 10% and 25% aqueous solutions were 5.03 ana 5.16 at $25^{\circ}C$. The preparations of cefoperazone did not contain any pyrogenic substances and did not liberate histamine in cats. The drug was highly compatible with common infusion solutions including 5% Dextrose solution and no significant potency decrease was observed in 5 hours after mixing. Powdered cefoperazone sodium contained in hermetically sealed and ligt-shielded container was highly stable at $4^circ}C{\sim}37^{\circ}C$ for 12 weeks. When stored at $4^{\circ}C$ the potency was retained almost completely for up to one year. 2) Antimicrobial activity against clinical isolates. Among the 230 clinical isolates included, Salmonella typhi was the most susceptible to cefoperazone, with 100% inhibition at MIC of ${\leq}0.5{\mu}g/ml$. Cefoperazone was also highly active against Streptococcus pyogenes(group A), Kletsiella pneumoniae, Staphylococcus aureus and Shigella flexneri, with 100% inhibition at $16{\mu}g/ml$ or less. More than 80% of Escherichia coli, Enterobacter aerogenes and Salmonella paratyphi was inhibited at ${\leq}16{\mu}/ml$, while Enterobacter cloaceae, Serratia marcescens and Pseudomonas aerogenosa were somewhat less sensitive to cefoperagone, with inhibitions of 60%, 55% and 35% respectively at the same MIC. 3) Animal pharmacokinetics Serum concentration, organ distritution and excretion of cefoperazone in rats were observed after single intramuscular injections at doses of 20 mg/kg and 50 mg/kg. The extent of protein binding to human plasma protein was also measured in vitro br equilibrium dialysis method. The mean Peak serum concentrations of $7.4{\mu}g/ml$ and $16.4{\mu}/ml$ were obtained at 30 min. after administration of cefoperazone at doses of 20 mg/kg and 50 mg/kg respectively. The tissue concentrations of cefoperazone measured at 30 and 60 min. were highest in kidney. And the concentrations of the drug in kidney, liver and small intestine were much higher than in blood. Urinary and fecal excretion over 24 hours after injetcion ranged form 12.5% to 15.0% in urine and from 19.6% to 25.0% in feces, indicating that the gastrointestinal system is more important than renal system for the excretion of cefoperazone. The extent of binding to human plasma protein measured by equilibrium dialysis was $76.3%{\sim}76.9%$, which was somewhat lower than the others utilizing centrifugal ultrafiltration method. 4) Animal pharmacodynamics Central nervous system : Effects of cefoperazone on the spontaneous movement and general behavioral patterns of rats, the pentobarbital sleeping time in mice and the body temperature in rabbits were observed. Single intraperitoneal injections at doses of $500{\sim}2,000mg/kg$ in rats did not affect the spontaneous movement ana the general behavioral patterns of the animal. Doses of $125{\sim}500mg/kg$ of cefoperazone injected intraperitonealy in mice neither increased nor decreased the pentobarbital-induced sleeping time. In rabbits the normal body temperature was maintained following the single intravenous injections of $125{\sim}2,000mg/kg$ dose. Respiratory and circulatory system: Respiration rate, blood pressure, heart rate and ECG of anesthetized rabbits were monitored for 3 hours following single intravenous injections of cefoperazone at doses of $125{\sim}2,000mg/kg$. The respiration rate decreased by $3{\sim}l7%$ at all the doses of cefoperazone administered. Blood pressure did not show any changes but slight decrease from 130/113 to 125/107 by the highest dose(2,000 mg/kg) injected in this experiment. The dosages of 1,000 and 2,000 mg/kg seemed to slightly decrease the heart rate, but it was not significantly different from the normal control. All the doses of cefoperazone injected were not associated with any abnormal changes in ECG findings throughout the monitering period. Autonomic nervous system and smooth muscle: Effects of cefoperazone on the automatic movement of rabbit isolated small intestine, large intestine, stomach and uterus were observed in vitro. The autonomic movement and tonus of intestinal smooth muscle increased at dose of $40{\mu}g/ml$ in small intestine and at 0.4 mg/ml in large intestine. However, in stomach and uterine smooth muscle the autonomic movement was slightly increased by the much higher doses of 5-10 mg/ml. Blood: In vitro osmotic fragility of rabbit RBC suspension was not affected by cefoperazone of $1{\sim}10mg/ml$. Doses of 7.5 and 10 mg/ml were associated with 11.8% and 15.3% prolongation of whole blood coagulation time. Liver and kidney function: When measured at 3 hours after single intravenous injections of cefoperaonze in rabbits, the values of serum GOT, GPT, Bilirubin, TTT, BUN and creatine were not significantly different from the normal control. 5) Safety evaluation Acute toxicity: The acute toxicity of cefoperazone was studied following intraperitoneal and intravenous injections to mice(A strain, 4 week old) and rats(Sprague-Dawler, 6 week old). The LD_(50)'s of intraperitonealy injected cefoperazone were 9.7g/kg in male mice, 9.6g/kg in female mice and over 15g/kg in both male and female rats. And when administered intravenously in rats, LD_(50)'s were 5.1g/kg in male and 5.0g/kg in female. Administrations of the high doses of the drug were associated with slight inhibition of spontaneous movement and convulsion. Atdominal transudate and intestinal hyperemia were observed in animals administered intraperitonealy. In rats receiving high doses of the drug intravenously rhinorrhea and pulmonary congestion and edema were also observed. Renal proximal tubular epithelial degeneration was found in animals dosing in high concentrations of cefoperazone. Subacute toxicity: Rats(Sprague-Dawley, 6 week old) dosing 0.5, 1.0 and 2.0 g/kg/day of cefoperazone intraperitonealy were observed for one month and sacrificed at 24 hours after the last dose. In animals with a high dose, slight inhibition of spontaneous movement was observed during the experimental period. Soft stool or diarrhea appeared at first or second week of the administration in rats receiving 2.0g/kg. Daily food consumption and weekly weight gain were similar to control during the administration. Urinalysis, blood chemistry and hematology after one month administration were not different from control either. Cecal enlargement, which is an expected effect of broad spectrum antibiotic altering the normal intestinal microbial flora, was observed. Intestinal or peritoneal congestion and peritonitis were found. These findings seemed to be attributed to the local irritation following prolonged intraperitoneal injections of hypertonic and acidic cefoperazone solution. Among the histopathologic findings renal proximal tubular epithelial degeneration was characteristic in rats receiving 1 and 2g/kg/day, which were 10 and 20 times higher than the maximal clinical dose (100 mg/kg) of the drug. 6) Human pharmacokinetics Serum concentrations and urinary excretion were determined following a single intravenous injection of 1g cefoperazone in eight healthy, male volunteers. Mean serum concentrations of 89.3, 61.3, 26.6, 12.3, 2.3, and $1.8{\mu}g/ml$ occured at 1,2,4,6,8 and 12 hours after injection respectively, and the biological half-life was 108 minutes. Urinary excretion over 24 hours after injection was up to 43.5% of administered dose.

  • PDF