Browse > Article
http://dx.doi.org/10.7778/jpkm.2021.35.4.96

Study on Intestinal Flora and IgA Concentration Analysis in Newborn Mice by Stress and Diet in Pregnant Mice to Investigate the Effect of Taedok on the Intestinal Flora  

Jeong, Jieun (Department of Pediatrics, College of Korean Medicine, Woosuk University)
Choi, Yoomin (Department of Acupuncture & Moxibustion, College of Korean Medicine, Woosuk University)
Jeong, Minjeong (Department of Pediatrics, College of Korean Medicine, Woosuk University)
Publication Information
The Journal of Pediatrics of Korean Medicine / v.35, no.4, 2021 , pp. 96-111 More about this Journal
Abstract
Objectives The purpose of this study is to look for pathological mechanism of disease development caused by Taedok, by studying whether stress and diet in pregnant ICR mice affect the intestinal flora and IgA (Immunoglobulin A) concentration. Methods The mice were divided into 4 groups (n=5 per group) based on the concept of Taedok: the control group (G1), stress group (G2), capsaicin diet group (G3), high fat diet group (G4). We collected and analyzed intestinal flora from maternal feces and cecal flora from neonatal mice by group. Then, IgA concentration in the maternal feces and sIgA (secretory Immunoglobulin A) concentration in the cecal contents of newborn mice were analyzed. In addition, serum corticosterone was analyzed before and after stress application. Results Changes in maternal intestinal flora and neonatal mice cecal flora by stress and diet were observed. There were no significant changes in the IgA concentration in maternal feces and the sIgA concentration in the cecal contents of neonatal mice. No significant changes compared to the control group were observed between groups before and after applying stress. However, when comparing within one subject, a significant increase was confirmed after stress application in the stress group (G2). Conclusions Based on the results, we observed stress and diet in pregnant mice affect the intestinal flora of maternal and neonatal. We were able to interpret the pathological mechanism of Taedok based on the principle of interaction between mother and newborn intestinal flora.
Keywords
Taedok; Microbiome; Stress; Capsaicin diet; High fat diet; ICR mouse;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lopez-Contreras BE, Moran-Ramos S, Villarruel-Vazquez R, Macias-Kauffer L, Villamil-Ramirez H, Leon-Mimila P, Vega-Badillo J, Sanchez-Munoz F, Llanos-Moreno LD, Canizalez-Roman A, Del Rio-Navarro B, Ibarra-Gonzalez I, Vela-Amieva M, Villarreal-Molina T, Ochoa-Leyva A, Aguilar-Salinas CA, Canizales-Quinteros S. Composition of gut microbiota in obese and normal-weight Mexican school-age children and its association with metabolic traits. Pediatr Obes. 2018;13(6):381-8.   DOI
2 Johnson BM, Gaudreau MC, Al-Gadban MM, Gudi R, Vasu C. 2015. Impact of dietary deviation on disease progression and gut microbiome com- position in lupus-prone SNF1 mice. Clin Exp Immunol. 2015;181(2):323-37.   DOI
3 Wang Y, Ouyang M, Gao X, Wang S, Fu C, Zeng J, He X. Phocea, Pseudoflavonifractor and Lactobacillus intestinalis: Three Potential Biomarkers of Gut Microbiota That Affect Progression and Complications of Obesity-Induced Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes Targ Ther. 2020;13:835-50.   DOI
4 Saulnier DM, Riehle K, Mistretta TA, Diaz MA, Mandal D, Raza S, Weidler EM, Qin X, Coarfa C, Milosavljevic A, Petrosino JF, Highlander S, Gibbs R, Lynch SV, Shulman RJ, Versalovic J. Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology. 2011;141(5):1782-91.   DOI
5 Luck H, Khan S, Kim JH, Copeland JK, Revelo XS, Tsai S, Chakraborty M, Cheng K, Chan YT, Nohr MK, Clemente-Casares X, Perry MC, Ghazarian M, Lei H, Lin YH, Coburn B, Okrainec A, Jackson T, Poutanen S, Gaisano H, Allard JP, Guttman DS, Conner ME, Winer S, Winer DA. Gut-associated IgA+ immune cells regulate obesity-related insulin resistance. Nat Commun. 2019;10(1);1-17.   DOI
6 Jalanka-Tuovinen J, Salojarvi J, Salonen A, Immonen O, Garsed K, Kelly FM, Zaitoun A, Palva A, Spiller RC, de Vos WM. Faecal microbiota composition and host-microbe cross-talk following gastroenteritis and in postinfectious irritable bowel syndrome. Gut. 2014;63 (11):1737-45.   DOI
7 Palma GD, Lynch MDJ, Lu J, Dang VT, Deng Y, Jury J, Umeh G, Miranda PM, Pastor MP, Sidani S, Pinto-Sanchez MI, Philip V, McLean PG, Hagelsieb MG, Surette MG, Bergonzelli GE, Verdu EF, Britz-McKibbin P, Neufeld JD, Collins SM, Bercik P. Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Sci Transl Med. 2017;9(379):6397.
8 Pozuelo M, Panda S, Santiago A, Mendez S, Accarino A, Santos J, Guarner F, Azpiroz F, Manichanh C. Reduction of butyrate- and methane-producing microorganisms in patients with irritable bowel syndrome. Sci Rep. 2015;5(1):12693.   DOI
9 Montano MM, Wang MH, Even MD, vom Saal FS. Serum corticosterone in fetal mice: sex differences, circadian changes, and effect of maternal stress. Physiol Behav. 1991;50(2):323-9.   DOI
10 Hong CE. Textbook of pediatrics, 12th ed. Seoul: Miraen. 2020:221-2.
11 Kalliomaki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol. 2001;107(1):129-34.   DOI
12 Hibberd AA, Yde CC, Ziegle ML, Honore AH, Saarinen MT, Lahtinen S, Stahl B, Jensen HM, Stenman LK. Probiotic or synbiotic alters the gut microbiota and metabolism in a randomised controlled trial of weight management in overweight adults. Benef Microbes. 2019;10(2):121-35.   DOI
13 Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, Harris HM, Coakley M, Lakshminarayanan B, O'Sullivan O, Fitzgerald GF, Deane J, O'Connor M, Harnedy N, O'Connor K, O'Mahony D, van Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O'Toole PW. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488(7410): 178-84.   DOI
14 Abrahamsson TR, Jakobsson HE, Andersson AF, Bjorksten B, Engstrand L, Jenmalm MC. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol. 2012;129(2):434-40.   DOI
15 Kim MH, Suh DI, Lee SY, Kim YK, Cho YJ, Cho SH. Microbiome research in food allergy and atopic dermatitis. Allergy Asthma Respir Dis. 2016;4(6): 389-98.   DOI
16 Hollister EB, Cain KC, Shulman RJ, Jarrett ME, Burr RL, Ko C, Zia J, Han CJ, Heitkemper MM. Relationships of microbiome markers with extraintestinal, psychological distress and gastrointestinal symptoms, and quality of life in women with irritable bowel syndrome. J Clin Gastroenterol. 2020;54(2):175-83.   DOI
17 Jeffery IB, O'Toole PW, Ohman L, Claesson MJ, Deane J, Quigley EMM, Simren M. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut. 2012;61(7):997-1006.   DOI
18 Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007;104(34):13780-5.   DOI
19 Jo JJ. Gupyubang. 1st ed. Seoul: Yeokang Publishing Co. 1993:44.
20 Walker WA. Mechanisms of action of probiotics. Clin Infect Dis. 2008;46(2):S87-91.   DOI
21 Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29): 8787-803.   DOI
22 Kalliomaki M, Isolauri E. Role of intestinal flora in the development of allergy. Curr Opin Allergy Clin Immunol. 2003;3(1):15-20.   DOI
23 Waters JL, Ley RE.. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 2019;17(1):83.   DOI
24 Kang MS, Chang GT, Kim JH. A study on fetal toxicosis removal therapy. J Pediatr Korean Med. 2003;17(1): 29-51.
25 Mueller NT, Whyatt R, Hoepner L, Oberfield S, Dominguez-Bello MG, Widen EM, Hassoun A, Perera F, Rundle A. Prenatal exposure to antibiotics, cesarean section and risk of childhood obesity. Int J Obes. 2015;39(4):665-70.   DOI
26 Cardwell CR, Stene LC, Joner G, Cinek O, Svensson J, Goldacre MJ, Parslow RC, Pozzilli P, Brigis G, Stoyanov D, Urbonaite B, Sipetic S, Schober E, Ionescu-Tirgoviste C, Devoti G, de Beaufort CE, Buschard K, Patterson CC. Caesarean section is associated with an increased risk of childhood-onset type 1 diabetes mellitus: a meta-analysis of observational studies. Diabetologia. 2008;51(5):726-35.   DOI
27 Luo XM, Edwards MR, Mu Q, Yu Y, Vieson MD, Reilly CM, Ahmed SA, Bankole AA, McBain AJ. Gut microbiota in human systemic lupus erythematosus and a mouse model of lupus. Appl Environ Microbiol. 2018;84(4):e2288-17.
28 Ha S. Oh D, Lee S, Park J, Ahn J, Choi S, Cheon KA. Altered gut microbiota in korean children with autism spectrum disorders. Nutrients. 2021;13(10):3300.   DOI
29 Tamana SK, Tun HM, Konya T, Chari RS, Field CJ, Guttman DS, Becker AB, Moraes TJ, Turvey SE, Subbarao P, Sears MR, Pei J, Scott JA, Mandhane PJ, Kozyrskyj AL. Bacteroides-dominant gut microbiome of late infancy is associated with enhanced neurodevelopment. Gut Microbes. 2021;13(1):e1930875.
30 Daniel H, Gholami AM, Berry D, Desmarchelier C, Hahne H, Loh G, Mondot S, Lepage P, Rothballer M, Walker A, Bohm C, Wenning M, Wagner M, Blaut M, Schmitt-Kopplin P, Kuster B, Haller D, Clavel T. High-fat diet alters gut microbiota physiology in mice. ISME J. 2014;8(2):295-308.   DOI
31 Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell JT, Spector TD, Clark AG, Ley RE. Human genetics shape the gut microbiome. Cell. 2014;159(4): 789-99.   DOI
32 Fu J, Bonder MJ, Cenit MC, Tigchelaar EF, Maatman A, Dekens JAM, Brandsma E, Marczynska J, Imhann F, Weersma RK, Franke L, Poon TW, Xavier RJ, Gevers D, Hofker MH, Wijmenga C, Zhernakova A, The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ Res. 2015;117(9):817-24.   DOI
33 Lim MY, You HJ, Yoon HS, Kwon B, Lee JY, Lee S, Song YM, Lee K, Sung J, Ko GP. The effect of heritability and host genetics on the gut microbiota and metabolic syndrome. Gut. 2017;66(6):1031-8.   DOI
34 He Y, Wu W, Wu S, Zheng HM, Li P, Sheng HF, Chen MX, Chen ZH, Ji GY, Zheng ZDX, Mujagond P, Chen XJ, Rong ZH, Chen P, Lyu LY, Wang X, Xu JB, Wu CB, Yu N, Xu YJ, Yin J, Raes J, Ma WJ, Zhou HW. Linking gut microbiota, metabolic syndrome and economic status based on a population-level analysis. Microbiome. 2018;6(1):172.   DOI
35 Simon GL, Gorbach SL. The human intestinal microflora. Dig Dis Sci. 1986;31(9):147-62.   DOI
36 Ismail IH, Oppedisano F, Joseph SJ, Boyle RJ, Licciardi PV, Robins-Browne RM, Tang MLK. Reduced gut microbial diversity in early life is associated with later development of eczema but not atopy in high-risk infants. Pediatr Allergy Immunol 2012;23(7):674-81.   DOI
37 Tanaka M, Nakayama J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol Int. 2017;66(4):515-22.   DOI
38 Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA. 2011;108(1):4578-85.   DOI
39 Karlsson H, Hessle C, Rudin A. Innate immune responses of human neonatal cells to bacteria from the normal gastrointestinal flora. Infect Immun. 2002;70(12): 6688-96.   DOI
40 Rook GAW, Brunet LR. Microbes, immunoregulation, and the gut. Gut. 2005;54(3):317-20.   DOI
41 Watanabe S, Narisawa Y, Arase S, Okamatsu H, Ikenaga T, Tajiri Y, Kumemura M. Differences in fecal microflora between patients with atopic dermatitis and healthy control subjects. J Allergy Clin Immunol. 2003;111(3): 587-91.   DOI
42 Bjorksten B, Sepp E, Julge K, Voor T, Mikelsaar M. Allergy development and the intestinal microflora during the first year of life. J Allergy Clin Immunol 2001;108(4): 516-20.   DOI
43 Penders J, Thijs C, van den Brandt PA, Kummeling I, Snijders B, Stelma F, Adams H, van Ree R, Stobberingh EE. Gut microbiota composition and development of atopic manifestations in infancy: the koala birth cohort study. Gut. 2007;56(5):661-8.   DOI
44 Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55-60.   DOI
45 Kim KB, Kim DG, Kim YH, Kim JH, Min SY, Park EJ, Baek JH, Sun HK, Yu SA, Lee SY, Lee JY, Chang GT, Jeong MJ, Chai JW, Cheon JH, Han YJ, Han JK. Hanbangsoacheongsonyeonuihak (sang). 2nd ed. Seoul: Eui Sung Dang Publishing Co. 2015:210-2.
46 Walker AW, Sanderson JD, Churcher C, Parkes GC, Hudspith BN, Rayment N, Brostoff J, Parkhill J, Dougan G, Petrovska L. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol. 2011;11(1):7.   DOI