• 제목/요약/키워드: caveolin-2

검색결과 33건 처리시간 0.022초

Sorting and Function of the Human Folate Receptor Is Independent of the Caveolin Expression in Fisher Rat Thyroid Epithelial Cells

  • Kim, Chong-Ho;Park, Young-Soon;Chung, Koong-Nah;Elwood, Patrick C.
    • BMB Reports
    • /
    • 제35권4호
    • /
    • pp.395-402
    • /
    • 2002
  • Caveolae are small, flask-shaped, non-clathrin coated invaginations of the plasma membrane of many mammalian cells. Caveolae have a coat that includes caveolin. They have been implicated in numerous cellular processes, including potocytosis. Since the human folate receptor (hFR) and other glycosyl-phosphatidylinositol (GPI)-tailed proteins have been co-localized to caveolae, we studied the caveolin role in the hFR function by transfecting hFR and/or caveolin cDNA into Fischer rat thyroid epithelial (FRT) cells that normally do not express detectable levels of either protein. We isolated and characterized stable clones as follows: they express (1) high levels of caveolin alone, (2) hFR and caveolin, or (3) hFR alone. We discovered that hFR is correctly processed, sorted, and anchored by a GPI tail to the plasma membrane in FRT cells. No difference in the total folic acid binding or cell surface folic acid binding activity were found between the FRT cells that were transfected with hFR, or cells that were transfected with hFR and caveolin. The hFR that was expressed on the cell surface of clones that were transfected with hFR was also sensitive to phosphatidylinositol-specific phospholipase C (PI-PLC) release, and incorporated radiolabeled ethanolamine that supports the attachment of a GPI-tail on hFR. We conclude that the processing, sorting, and function of hFR is independent on the caveolin expression in FRT cells.

Expression of caveolin-3 as positive intracellular signaling regulator on the development of hypertrophy in cardiac tissues

  • Kim, Joo-Heon;Han, Jin;Kim, Yong-Kwon;Yang, Young-Ae;Hong, Yonggeun
    • 대한수의학회지
    • /
    • 제45권4호
    • /
    • pp.537-544
    • /
    • 2005
  • We have examined distribution and expression of caveolin-3 (cav-3), one of three caveolin isoforms from 16-wks-old spontaneously hypertensive rats (SHR) compared with age-matched control wistar-kyoto (WKY) rats. The expression of cav-3 was increased, whereas expression of PKB/Akt and calcineurin (Cn) was not changed in cardiac tissues of SHR compared to WKY rats. Interestingly, expression of cav-3, PKB/Akt and Cn were decreased in plasma membrane fraction in SHR compared to WKY rats. In H9c2 cardiomyoblast cells treated with phenylephrine ($50{\mu}M$, 48hr) or isoproterenol ($10{\mu}M$, 48hr), the expression of cav-3 was markedly enhanced compared to nontreated cells. Upon immunofluorescence analysis, cav-3 was localized in plasma membrane of control H9c2 cells. However phenylephrine or isoproterenol treatment caused translocation of cav-3 to perinuclear region. These results suggest that cav-3 plays as positive regulators in the development of hypertrophy in cardiac tissues of SHR rats.

PANC-1세포에서 발현된 재조합 MT1-MMP의 효소 활성 (Activities of Recombinant MT1-MMP Expressed in PANC-1 Cells.)

  • 김혜난;정혜신
    • 생명과학회지
    • /
    • 제18권3호
    • /
    • pp.422-425
    • /
    • 2008
  • Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a membrane-associated zinc-dependent endoproteinase involved in extracellular matrix remodeling. MT1-MMP hydrolyzes ECM proteins like collagen and is involved in cancer cell migration and metastasis. Caveolins are integral membrane proteins and play a role in formation of caveolae, specialized membrane microdomains involved in clathrin-independent endocytosis. Recombinant MT1-MMP was transiently expressed in PANC-1 cells. Cells expressing recombinant MT1-MMP were able to hydrolyze collagen and migrate on collagen coated trans-well. Both subjacent collagen degradation and the cell migration conferred by recombinant MT1-MMP were inhibited by co-transfection of plasmids containing caveolin-1 cDNA. The results support that MT1-MMP is localized in lipid raft of the membrane and MT1-MMP activities in invasive cells could be inhibited by caveolin.

소의 CSRP3, APOBEC2, Caveolin 유전자들의 단일염기다형 분석 (Analysis of SNPs in Bovine CSRP3, APOBEC2 and Caveolin Gene Family)

  • 삼술부이얀;유성란;김관석;윤두학;박응우;전진태;이준헌
    • Journal of Animal Science and Technology
    • /
    • 제49권6호
    • /
    • pp.719-728
    • /
    • 2007
  • CSRP3, APOBEC2, CAV1, CAV2 및 CAV3 유전자들은 포유동물에서 도체와 육질 형질에 중요한 역할을 하는 것으로 보고되고 있다. 따라서, 이 유전자들의 단일염기다형(Single nucleotide poly- morphism; SNP)을 8개의 다른 소의 품종에서 확인한 결과 coding region에서 caveolin family 유전자에서 9개의 SNP, CSRP3유전자에서 1개의 SNP 및 APOBEC2 유전자에서 3개의 SNP가 존재함을 확인하였다. 이 coding region의 SNP들은 PCR-RFLP 방법에 의해 재확인하였으며 이들 유전자의 intronic region에서도 9개의 SNP가 존재함을 확인할 수 있었다. 8개의 다른 품종 소에 각 유전자들의 SNP들을 이용하여 유전자 빈도를 확인한 결과 CAV2, CAV3, CSRP3 및 APOBEC2 유전자의 SNP 중에서 5개가 품종간에서 유의적으로 차이가 있음을 확인할 수 있었다. 이 SNP들은 차후 검증작업을 통하여 육질관련 형질 마커로 이용될 수 있을 것으로 사료된다.

Resource conservation using whole body autophagy: Self-digestion of shedded gut lining cells in the small intestine

  • Lee, Phil Jun;Cho, Namki;Yoo, Hee Min;Chang, Sun-Young;Ko, Hyun-Jeong;Kim, Hong Pyo
    • 한국식품과학회지
    • /
    • 제52권3호
    • /
    • pp.244-248
    • /
    • 2020
  • To retain valuable resources, organisms adopt several strategies including coprophagy. Cells covering the outer skin and internal digestive lumen are actively recycled to maintain their integrity. In present study, we suggested that the small intestine can consume dead cells in a manner similar to how it consumes protein from the diet. We examined the eluates from five segments of the mouse small intestine and cecum and 2 segments of the large intestine and small intestine tissue, and detected immunoreactivity with eukaryotic caveolin-1 and β-actin antibodies only in the cecum and 2 segments from the large intestine. Bacterial agitation of the mouse intestine with Shigella disrupted the architecture and absorptive function of the small intestine. Small intestine eluates were immunoreactive with murine caveolin-1 and contained heme as determined by dot blot analysis. We concluded that the body conserves resources in the small intestine by disposing of and recycling shedded cells.

Effects of Geiji-Bokryung-Hwan on eNOS, nNOS, Caveolin-1 and bFGF Protein Expressions and the Endothelial Cells of the Corpus Cavernosum in Hypercholesterolemic Rat

  • Kim Jae-Woo;Son Soo-Gon;Sa Eun-Ho;Kim Cherl-Ho;Park Won-Hwan
    • 동의생리병리학회지
    • /
    • 제20권1호
    • /
    • pp.174-180
    • /
    • 2006
  • We examine the effect of Geiji-Bokryung-Hwan(GBH) on erectile function in a rat model of hypercholesterolemic erectile dysfunction. GBH, a drug preparation consisting of five herbs of Cinnamomi Ramulus (Geiji), Poria Cocos (Bokryun), Mountan Cortex Radicis (Mokdanpi), Paeoniae Radix (Jakyak), and Persicae Semen (Doin) is a traditional Korean herbal medicine that is widely used in the treatment of atherosclerosis-related disorders. In this study, 3-month-old Sprague-Dawley rats were used. The 6 rats control animals were fed a normal diet and the other 18 rats were fed 1% cholesterol diet for 3 months. After 1 months, GBH was added to the drinking water of the treatment group of 12 rats but not the cholesterol only group of 6 rats. Of the 12 rats 6 received 30 mg/kg per day (group 1) and 6 received 60 mg/kg per day (group 2) of GBH. At 3 months erectile function was evaluated with cavernous nerve electrostimulation in all animals. Penile tissues were collected for electron microscopy, and to perform Western blot for endothelial nitric oxide synthase (eNOS), neuronal nitric oxide synthase (nNOS), basic fibroblast growth factor (bFGF) and caveolin-1. Systemic arterial pressure was not significantly different between the animals that were fed the 1% cholesterol diet and the controls. Conversely erectile function was not impaired in the herbal medicine treated rats. Electron microscopy showed many caveolae with fingerlike processes in the cavernous smooth muscle and endothelial cell membranes in control and treated rats but not in the cholesterol only group of rats. Western blot showed differences among groups in protein expression for eNOS, nNOS, caveolin-1 and bFGF protein expression in penile tissue. Increased eNOS and nNOS protein expressions dy high cholesterol diet were significantly decreased in group 1 and group 2. Interestingly, caveolin-1 and bFGF protein expression was significantly higher in groups 1 and 2 than in the cholesterol only and control groups.

Caveolin-1 in Breast Cancer: Single Molecule Regulation of Multiple Key Signaling Pathways

  • Anwar, Sumadi Lukman;Wahyono, Artanto;Aryandono, Teguh;Haryono, Samuel J
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권16호
    • /
    • pp.6803-6812
    • /
    • 2015
  • Caveolin-1 is a 22-kD trans-membrane protein enriched in particular plasma membrane invaginations known as caveolae. Cav-1 expression is often dysregulated in human breast cancers, being commonly upregulated in cancer cells and downregulated in stromal cells. As an intracellular scaffolding protein, Cav-1, is involved in several vital biological regulations including endocytosis, transcytosis, vesicular transport, and signaling pathways. Several pathways are modulated by Cav-1 including estrogen receptor, EGFR, Her2/neu, $TGF{\beta}$, and mTOR and represent as major drivers in mammary carcinogenesis. Expression and role of Cav-1 in breast carcinogenesis is highly variable depending on the stage of tumor development as well as context of the cell. However, recent data have shown that downregulation of Cav-1 expression in stromal breast tumors is associated with frequent relapse, resistance to therapy, and poor outcome. Modification of Cav-1 expression for translational cancer therapy is particularly challenging since numerous signaling pathways might be affected. This review focuses on present understanding of Cav-1 in breast carcinogenesis and its potential role as a new biomarker for predicting therapeutic response and prognosis as well as new target for therapeutic manipulation.

Increased Caveolin-2 Expression in Brain Endothelial Cells Promotes Age-Related Neuroinflammation

  • Hyunju, Park;Jung A, Shin;Jiwoo, Lim;Seulgi, Lee;Jung-Hyuck, Ahn;Jihee Lee, Kang;Youn-Hee, Choi
    • Molecules and Cells
    • /
    • 제45권12호
    • /
    • pp.950-962
    • /
    • 2022
  • Aging is a major risk factor for common neurodegenerative diseases. Although multiple molecular, cellular, structural, and functional changes occur in the brain during aging, the involvement of caveolin-2 (Cav-2) in brain ageing remains unknown. We investigated Cav-2 expression in brains of aged mice and its effects on endothelial cells. The human umbilical vein endothelial cells (HUVECs) showed decreased THP-1 adhesion and infiltration when treated with Cav-2 siRNA compared to control siRNA. In contrast, Cav-2 overexpression increased THP-1 adhesion and infiltration in HUVECs. Increased expression of Cav-2 and iba-1 was observed in brains of old mice. Moreover, there were fewer iba-1-positive cells in the brains of aged Cav-2 knockout (KO) mice than of wild-type aged mice. The levels of several chemokines were higher in brains of aged wild-type mice than in young wild-type mice; moreover, chemokine levels were significantly lower in brains of young mice as well as aged Cav-2 KO mice than in their wild-type counterparts. Expression of PECAM1 and VE-cadherin proteins increased in brains of old wild-type mice but was barely detected in brains of young wild-type and Cav-2 KO mice. Collectively, our results suggest that Cav-2 expression increases in the endothelial cells of aged brain, and promotes leukocyte infiltration and age-associated neuroinflammation.

Phosphorylation of tyrosine-14 on Caveolin-1 enhances lipopolysaccharide-induced inflammation in human intestinal Caco-2 cells

  • Gong Deuk Bae;Kyong Kim;Se-Eun Jang;Dong-Jae Baek;Eun-Young Park;Yoon Sin Oh
    • Journal of Applied Biological Chemistry
    • /
    • 제66권
    • /
    • pp.311-319
    • /
    • 2023
  • Caveolin-1 (Cav-1) is the main structural component of the caveolae on the plasma membrane, which regulates various cellular processes, including cell growth, differentiation, and endocytosis. Although a recent study demonstrated that Cav-1 might be involved in diabetes-associated inflammation, its exact role in the intestine was unclear. In this study, we examined the intestinal expression of Cav-1 in diabetic conditions. We also investigated its effect on lipopolysaccharide (LPS)-induced inflammation by expressing this protein in human intestinal Caco-2 cells lacking Cav-1. We observed that increased Cav-1 levels and decreased expression of tight junction proteins affected intestinal permeability in high-fat diet-induced diabetic mice. When Caco-2 cells were treated with LPS, Cav-1 enhanced the NF-κB signaling. Moreover, LPS reduced the expression of tight junction proteins while it increased cell-cell permeability and reactive oxygen species generation in Caco-2 cells and this effect was amplified by cav-1 overexpression. LPS treatment promoted phosphorylation of tyrosine-14 (Y14) on Cav-1, and the LPS-induced NF-κB signaling was suppressed in cells expressing non-phosphorylatable Cav-1 (tyrosine-14 to phenylalanine mutant), which reduced intestinal barrier permeability. These results suggest that Cav-1 expression promotes LPS-induced inflammation in Caco-2 cells, and phosphorylation of Y14 on Cav-1 might contribute to the anti-inflammatory response in LPS-induced NF-κB signaling and cell permeability.

Identification of the Gene Responsible for Chicken Muscular Dystrophy

  • Matsumoto, Hirokazu;Sasazaki, Shinji;Mannen, Hideyuki
    • 한국가금학회지
    • /
    • 제38권2호
    • /
    • pp.145-154
    • /
    • 2011
  • By a series of positional cloning, we successfully narrowed down the AM candidate region to approximately 1.2 Mbp on GGA2q including 7 functional genes. Subsequently, we identified WWP1 gene as the most likely AM candidate by sequence comparison. The amino acid sequence around the candidate mutation was highly conserved among tetrapods, suggesting that WWP1 is the causative gene of chicken muscular dystrophy. Transfection of mutated WWP1 gene into $C_2C_{12}$ myoblasts disrupted muscle differentiation process. The abnormal muscle differentiation is a characteristic of chicken muscular dystrophy, so we could demonstrate a part of phenotype of the disease. Furthermore, western blotting revealed that accumulation of caveolin-3 protein is limited in damaged muscle of muscular dystrophic chicken, suggesting caveolin-3 may be associated with the pathological change of the disease. We could conclude that WWP1 gene is the responsible one for chicken muscular dystrophy from these results, but the mechanism leading the onset should be clarified in the future. The information will contribute to the study of chicken muscular dystrophy and the corresponding human dystrophies.