• Title/Summary/Keyword: cave water

Search Result 80, Processing Time 0.028 seconds

Bullock Creek Caves

  • Emberson, Rowan
    • Journal of the speleological society of Korea
    • /
    • no.7
    • /
    • pp.37-39
    • /
    • 1998
  • The Bullock Creek Caves are located adjacent to the usually dry river bed of Bullock Creek, which reaches the sea about a kilometer north of Punakaiki. The caves have been comprehensively written up by Rodgers(l972). Under conditions of normal water flow Bullock Creek submerges where the stream meets limestone on the west side of thier Punakaiki syncline. In flood conditions it overflows the first submergence and progressively floods a series of smaller submergences down valley until it comes to the caves shown on the map. All these with the exception of Wazpretti Cave and Dry Valley Cave are probably more or less flooded during and after heavy rain.(omitted)

  • PDF

Karst in the Korean Peninsula

  • Oh, Jong-Woo
    • Journal of the Speleological Society of Korea
    • /
    • no.78
    • /
    • pp.33-41
    • /
    • 2007
  • Alpine caves, subterranean passages, are extensively controlled by folds and faults. Caves of the regions demonstrate a significant dip of the passages due to the structural deformations. There are many vertical voids and shaft. Speleo-scapes in the internal caves are various. Calcite formations show the water table alternations which indicate the uplifting and erosional base level droppings during at least the Quaternary. Around cave entrenches there are remnants of the Fluvial terraces on the middle of the hills. These relationship between cave locations and terraces will generate a key to the Plestocene history of the south Korean peninsula. Hence, the Korean karst is turned as "the overburden alpine karst".

Characteristics of Lime-cavities and Survey Design for Bridge Foundation in the Karst Area (석회 공동의 특성과 카르스트 지역 내 교량 기초를 위한 조사 설계)

  • 윤운상;김학수;최원석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.399-406
    • /
    • 1999
  • Recently, the construction of the several highway bridges in the karst area have encountered severe problems associated with cavities and sinkholes. To solve this problems, it is important to understand the distribution characteristics of cavities in the construction site on limestone area. This paper briefly describes the different types, the distribution control factors and the infill sediment types of lime-cavities in the study area, bridge site in the karst area and propose the effective method of survey design. Cavity system may be divided into two main groups, 1)'slot and cave system'and 2)'sinkhole and cave system'. And the shape, the size and the distribution pattern of cavity are controlled by three main factors - rock type, geological structure and ground water condition. Additionally, infill sediment may be considered as one of the important design factors for foundation design and divided into four types by sediment properties. There are geophysical thechnics and geologic survey and drilling test, etc. by the survey method to interpretate characteristics of cavity system, and this methods are optimally designed at the site investigation stage.

  • PDF

Geological Environments and Deterioration Causes of the Buddhist Triad Cave in Gunwi, Korea (군위 삼존석굴의 지질환경과 훼손원인)

  • 황상구;김수정;이현우
    • Economic and Environmental Geology
    • /
    • v.35 no.5
    • /
    • pp.407-420
    • /
    • 2002
  • The Buddhist Triad Cave in Gunwi (National treasure No. 109) consists of porphyritic biotite granite, and it has been deteriorated into microorganic smears, white films, brown rusts, granular decay, color changes, and joints by the same weathering factors as rain, moisture, temperature variation and microorganic living. Main origin is probably the rain that leaks into the cave along joints in Palgongsan granite, and then its moisture grows many microorganism and is frozen over during winter. The granites around the cave regularly develop two NEE and NWW joint sets that are conjugate to be a joint system. The NEE set extends far away with narrow joint spacings and affects the leakage of the rains, and is divided into 4 joint zones, among which J$_{m}$ and J$_{3}$ immediately affect the leaking water into the cave. An extensional Joint, in northern wall of the cave, was formed by toppling of the block between J$_{m}$and J$_{3}$joint zones from widening the Jm aperture by roots of a big pine tree, and passes through the J$_{m}$joint zone. This bypass allows no circulation of small rain, but a good circulation of heavy rain from influx to the cave for a long pathway. Many Joints and cracks, in the ceiling near the cave entrance, immediately get through the J$_3$ joint zone, and have a good circulation of small rain 10 mm. Both J$_{m}$and J$_{3}$ joint zones are, therefore, chief influxes that cause leakage of the rains.

The Genetic Diversity of Bacterial Communities in the Groundwater (지하수 세균 군집의 유전적 다양성)

  • 김여원;민병례;최영길
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.1
    • /
    • pp.53-61
    • /
    • 2000
  • In order to characterize the genetic diversity of bacterial community in groundwater, samples were collected from used for drinking water and polluted with heavy metal wastewater in Seoul city and natural cave of Kangwondo. The DNA was amplified with 165 rDNA-based primers by use of the PCR, and then analysed ARDRA (amplified ribosomal DNA restriction analysis). Restriction endonuclease analysis patterns of amplified 165 rDNA in drinking water and wastewater relatively showed high genetic diversity in situ and drinking groundwater. The number of DNA fragments varied with in situ and drinking water. This method of ARDRA of bacterial communities in groundwater could be used for a quick assessment of genotypic changes between different locations reflecting different environmental conditions and the diversity reflected pollution of groundwater (natural cave water>drinking water>waste water, as in order of grade). [Genetic diversity, Groundwater, 165 rDNA, PCR, ARDRA].

  • PDF

A Case Study for Construction Hazard Zonation Maps and its Application (석회암 지역 재해 등급도 작성 및 응용에 관한 사례 연구)

  • 정의진;윤운상;김중휘;마상준;김정환;이근병
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.165-172
    • /
    • 2002
  • We presents an hazard zonation mapping technique in karst terrain and its assessment. From the detailed engineering geological mapping. Controlling factors of sink hole and limestone cave formation were discussed and 4 main hazard factors affecting hazard potential are identified as follows: prerequisite hazard factor(distributions of pre-existing sink holes and cavities), geomorphological hazard factors(slope gradient, vegetation, and drainage pattern etc.) geological hazard factors(lithology, fracture patterns and geological structures etc.) and hydraulic conditions(hydraulic head, annual fluctuation of ground water table and composition of g/w water). From the construction of hazard zonation map along the Jecheon-Maepo area, and vertical cross-sectional hazard zonations specific tunnel site we suggest hazard zonation rating systems.

  • PDF

A Study on the Binary Appearance in Pseudo limestone Cavern (이차원의 위종유동에 관한 동굴미지형학적 연구 -천연기염물 236호로 지정된 황금굴을 중심으로-)

  • 한국동굴학회
    • Journal of the Speleological Society of Korea
    • /
    • no.66
    • /
    • pp.45-57
    • /
    • 2005
  • This Paper is a study on the duality of speleothem that appeared in 'Hyeob Jae Cave' which is designated as the natural monumen. No.236. It is located at Hyeob Jae Ri, Hanrim Eub, Bug Je-ju Gun, Je-judo. The findings are as follows. 1. The distribution range of the shelly sand which has maximum thickness of $10m{\pm}$ and average of $3m{\pm}$ was $3.2m^2$. 2. The desert hollow acted to promote the speleothem deposits in the lava tunnel with lava mound formed by lavapilz and artificial breaksand wall. 3. The main component of the pseudo limestone cavern was carbonate Calcium from shelly sand. And the deposition of speleothem in the Cave was accelerated after the volcanic erupsion of Biyang island in 1002. A.D. 4. The secondary depositions of Calcite recognized as speleothem up to now it can be used for the pseudo karst in general. 5. It seems that the variety of the cave deposits is decided depending upon the geology, land form, climate, vegetations and the structural environmental factors. 6. It seems that the wondering development of accretionary deposits caused by encrusting has a close relation with intermittent seepage of ground water. 7. Finally, we can acknowledge the coexistent duality of speleothem by shelly sand along with the joint and the lava stalactites formed at the same time with the lava tunnel on the ceiling where there was no seepage.

A Unique Prokaryotic Assemblage of Wall Biofilm of a Volcanic Cave (Daesubee) in Jeju (제주도 용암동굴 대섭이굴 미생물 막의 독특한 원핵미생물 군집)

  • Moon, Jong-Geun;Jung, Man-Young;Kim, Jong-Geol;Park, Soo-Je;Kim, Dae-Shin;Kim, Jong-Shik;Rhee, Sung-Keun
    • Korean Journal of Microbiology
    • /
    • v.49 no.2
    • /
    • pp.184-190
    • /
    • 2013
  • Cave environment provides special ecosystems for evolution of lives distant from surface environments. We investigated bacterial and archaeal communities of wall biofilm obtained from of a volcanic cave (Daesubee) in Jeju, Republic of Korea. Bacterial and archaeal 16S rRNA genes were PCR-amplified and sequenced using pyrosequencing technologies. Unique prokaryotic communities with low diversities were observed. The main bacterial sequences (ca. 83% of total reads) were affiliated with Pseudonocardia mongoliensis of phylum Actinobacteria and clustered with clones obtained from various caves. Reflection of light on the wall surface of cave might be caused by formation of beads of water caused by hydrophobic filaments of actinobacterial colonies. Main archaeal sequences (ca. 65.7% of total reads) were related with those of I.1a-Associated group of phylum Thaumarchaeota. The sequences were related with that of Candidatus Nitrosotalea devanaterra which was known to oxidize ammonia under acidic condition (ca. pH 5.0). Nutrients leached through volcanic soils contribute formation of unique microbial communities of wall biofilm of cave Daesubee.

A Study on the Mechanism of Environmental Pollution in Caves (개방동굴의 환경오염 메카니즘에 관한 연구 - 고수동굴을 사례로 -)

  • Hong, Hyun-Cheol
    • Journal of the Speleological Society of Korea
    • /
    • no.89
    • /
    • pp.37-45
    • /
    • 2008
  • If a cave is developed and opened to the public, the pollution in caves is inevitable. This kind of environmental pollution is caused by an environmental pollution system that is formed by the interaction among various pollution factors, not by a single factor. The main causes of the pollution are the development of passage, installation of lamps, tourists, oxidation of fixtures, temperature rise and littering, which in turn causes environmental pollution such as green and black mold growth, vatting, exfoliation and water pollution.

Ecological study for The control of Green Contamination in Korean Show Caves

  • Kim, Byoung-Woo
    • Journal of the Speleological Society of Korea
    • /
    • no.85
    • /
    • pp.21-24
    • /
    • 2008
  • The chlorophyta and thebryophyta are became extinct by the shutting out the light and low temperature in caves. Whenever they get the conditions, they grow again immediately. It is necessary to keep the illumination distance over 2m and use the indirect light. The effect of lamp light and temperature is very important in the control of green contamination but the water and moisture in caves are essential factors in green contamination in the show caves. It's better to get rid of green alae and mosses at early stage for the control of the increase of green contamination. They must be isolated completely without the dispersion with moist pieces of cloth or sponge. It is necessary to shut out the cave route periodically for the restoration of cave environments and ecosystem. It's better to use the lamp keeping illumination and restricting the ascension of heat for the control of green contamination.