• 제목/요약/키워드: cationic amphipathic peptides

검색결과 10건 처리시간 0.029초

Design, Characterization, and Antimicrobial Activity of a Novel Antimicrobial Peptide Derived from Bovine Lactophoricin

  • Kim, Ji-Sun;Jeong, Ji-Ho;Kim, Yongae
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권4호
    • /
    • pp.759-767
    • /
    • 2017
  • Lactophoricin (LPcin), which is a part of proteose peptone isolated from bovine milk, is a cationic amphipathic ${\alpha}-helical$ antimicrobial peptide. Its truncated variants and mutated analogs were designed and their antimicrobial activities were evaluated by using various assays, like broth dilution methods and disk diffusion methods as well as hemolysis assay. Three analogs, LPcin-C8 (LPcin-YK1), LPcin-T2&6W (LPcin-YK2), and LPcin-T2&6W-C8 (LPcin-YK3), which showed better antibiotic activities than LPcin, were selected. Their secondary structures were also characterized by using CD spectropolarimetry. These three analogs of LPcin could be used as an alternative source of powerful antibacterial agents.

Synthesis and Antibiotic Activities of CRAMP, a Cathelin-related Antimicrobial Peptide and Its Fragments

  • 하종명;신송엽;강신원
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권9호
    • /
    • pp.1073-1077
    • /
    • 1999
  • CRAMP, a 37-amino acid cationic antimicrobial peptide was recently deduced from the cDNA cloned from mouse femoral marrow RNA. In order to investigate the structure-activity relationship and functional region of CRAMP, CRAMP and its 18-mer overlapping peptides were synthesized by the solid phase method. CRAMP showed broad spectrum antibacterial activity against both Gram-positive and Gram-negative bacterial strains (MIC: 3.125-6.25 μM) but had no hemolytic activity until 50 μM. CRAMP was found to have a potent anticancer activity (IC50: 12-23 μM) against two human small cell lung cancer cell lines. Furthermore, CRAMP was found to display faster bactericidal rate in B. subtilis rather than E. coli in the kinetics of bacterial killing. Among 18-meric overlapping fragment peptides, only CRAMP (16-33) displayed potent antibacterial activity (MIC: 12.5-50 μM) against several bacteria with no hemolytic activity. Circular dichroism (CD) spectra anal-ysis indicated that CRAMP and its analogues will form the amphipathic α-helical conformation in the cell membranes similar to other antimicrobial peptides, such as cecropins and magainins.

환경 독성 Peptide의 인지질과의 상호 작용 특성 분석 (Analysis of the Interactive Characteristic of Environmental Toxic Peptide and Phospholipid)

  • 이봉헌;박흥재
    • 한국환경과학회지
    • /
    • 제12권1호
    • /
    • pp.77-80
    • /
    • 2003
  • The interaction of mastoparan B, a cationic tetradecapeptide amide isolated from the hornet Vespa basalis, with phospholipid bilayers was studied with synthetic mastoparan B and its analogue with Ala instead of hydrophobic 12th amino acid residue in mastoparan B. MP-B and its derivative, [12-Ala]MP-B were synthesized by the solid-phase peptide synthesis method. MP-B and its analogue, [12-Ala]MP-B adopted an unordered structure in buffer solution. In the presence of neutral and acidic liposomes, the peptides took an $\alpha$-helical structure. The two peptides interacted with neutral and acidic lipid bilayers. These results indicated that the hydrophobic face in the amphipathic $\alpha$-helix of MP-B critically affected the biological activity and helical content.

Optimized Methods for purification and NMR measurement of antibacterial peptide, bovine lactophoricin

  • Kim, Ji-Sun;Park, Tae-Joon;Kim, Yong-Ae
    • 한국자기공명학회논문지
    • /
    • 제13권2호
    • /
    • pp.96-107
    • /
    • 2009
  • Lactophoricin (LPcin-I) is a cationic amphipathic peptide with 23-mer peptide, and corresponds to the carboxy terminal 113-135 region of Component-3 of proteose-peptone. LPcin-I is a good candidate as a peptide antibiotic, because it has an antibacterial activity, but no hemolytic activity. On the other hand, its shorter analog (LPcin-II), which corresponds to the 119-135 region of PP3, has no antibacterial activity. In order to understand the structure-activity relationship under the membrane environments, we succeed to produce large amounts of LPcin-I and LPcin-II peptides. Peptides were over expressed in the form of fusion protein in Escherichia coli, and purified with several chromatography techniques. In this paper, we introduce the optimizing processes of purification and NMR measurement.

Conformation and Biological Activity of Mastoparan B and Its Analogs I

  • 박남규;서정길;구희정;이산나무;Gohsuke Sugihara;김광호;박장수;강신원
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권1호
    • /
    • pp.50-56
    • /
    • 1997
  • The mode of action of mastoparan B, an antimicrobial cationic tetradecapeptide amide isolated from the hornet Vespa basalis, toward phospholipid bilayers was studied with synthetic mastoparan B and its analogs with individual Ala instead of hydrophobic amino acids (1-Ile, 3-Leu, 6-Leu, 7-Val, 9-Trp, 13-Val, 14-Leu) in mastoparan B. Mastoparan B and its analogs were synthesized by the solid-phase method. Circular dichroism spectra showed that mastoparan B and its analogs adopted an unordered structure in buffer solution. In the presence of neutral and acidic liposomes, most of the peptides took an α-helical structure. The calcein leakage experiment indicated that mastoparan B interacted strongly with neutral and acidic lipid bilayers than its analogs. Mastoparan B also showed a more or less highly antimicrobial activity and hemolytic activity for human erythrocytes than its analogs. These results indicate that the hydrophobic face in the amphipathic α-helix of mastoparan B critically affect biological activity and helical contents.

곤충유래 항균 펩티드의 의약학적 적용 (Pharmaco-medical Application of Antimicrobial Peptides Derived from Insect)

  • 이준하;김인우;김미애;윤은영;황재삼
    • 생명과학회지
    • /
    • 제26권6호
    • /
    • pp.737-748
    • /
    • 2016
  • 현재까지 곤충 항균 펩티드는 1980년에 세크로피아나방(Hyalophora cecropia) 번데기의 혈림프로부터 세크로핀(cecropin)이 처음으로 정제된 이후로 150개 이상의 펩티드가 분리되어 특성들이 보고되어 왔다. 그러므로 곤충은 항균 펩티드 선발을 위한 좋은 재료로서 고려되어 왔다. 곤충 항균 펩티드는 분자량이 작으며 양전하를 띠고 다양한 길이와 서열 및 구조를 갖는 양친매성의 특징을 갖는다. 곤충 항균 펩티드는 박테리아, 진균, 기생충, 그리고 바이러스와 같은 병원체들의 침입에 대항하여 곤충의 선천성 면역체계에서 중요한 역할을 수행한다. 대부분의 곤충 항균 펩티드들은 상처가 나거나 면역화 시 지방체와 다른 특정 조직들에서 유도 합성된다. 이어서 그 항균 펩티드들은 미생물들에 대항하여 작용하기 위해 혈림프로 분비되어 나온다. 이들 펩티드들은 항암활성을 포함하여 다양한 미생물들에 대해 광범위한 항균활성을 나타낸다. 곤충 항균 펩티드는 구조 및 서열상의 특징들에 기초하여 크게 4개의 패밀리로 나누어질 수 있다. 다시 말해서 α-나선형 펩티드, 시스테인-풍부 펩티드, 프롤린-풍부 펩티드, 그리고 글리신-풍부 펩티드/단백질이 그것이다. 예를 들면, 세크로핀, 곤충 디펜신(defensin), 프롤린-풍부 펩티드, 그리고 아타신(attacin)이 일반적인 곤충 항균 펩티드들인데, 글로베린(gloverin)과 모리신(moricin)은 나비목 종들에서만 확인되어 왔다. 본 총설에서는 곤충의 항균 펩티드들에 초점을 맞추어 곤충 항균 펩티드들의 적용 가능성 및 방향과 함께 현재의 지식들과 최근의 진전된 사항들에 대하여 논의하고자 한다.

Structural Design and Characterization of a Channel-forming Peptide

  • Krittanai, Chartchai;Panyim, Sakol
    • BMB Reports
    • /
    • 제37권4호
    • /
    • pp.460-465
    • /
    • 2004
  • A 16-residue polypeptide model with the sequence acetyl-YALSLAATLLKEAASL-OH was derived by rational de novo peptide design. The designed sequence consists of amino acid residues with high propensity to adopt an alpha helical conformation, and sequential order was arranged to produce an amphipathic surface. The designed sequence was chemically synthesized using a solid-phase method and the polypeptide was purified by reverse-phase liquid chromatography. Molecular mass analysis by electro-spray ionization mass spectroscopy confirmed the correct designed sequence. Structural characterization by circular dichroism spectroscopy demonstrated that the peptide adopts the expected alpha helical conformation in 50% acetonitrile solution. Liposome binding assay using Small Unilamellar Vesicle (SUV) showed a marked release of entrapped glucose by interaction between the lipid membrane and the tested peptide. The channel-forming activity of the peptide was revealed by a planar lipid bilayer experiment. An analysis of the conducting current at various applied potentials suggested that the peptide forms a cationic ion channel with an intrinsic conductance of 188 pS. These results demonstrate that a simple rational de novo design can be successfully employed to create short peptides with desired structures and functions.

The Novel Biological Action of Antimicrobial Peptides via Apoptosis Induction

  • Cho, Jaeyong;Hwang, In-Sok;Choi, Hyemin;Hwang, Ji Hong;Hwang, Jae-Sam;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권11호
    • /
    • pp.1457-1466
    • /
    • 2012
  • Antimicrobial peptides (AMPs) exert antimicrobial activity against Gram-positive and Gram-negative bacteria, fungi, and viruses by various mechanisms. AMPs commonly possess particular characteristics by harboring cationic and amphipathic structures and binding to cell membranes, resulting in the leakage of essential cell contents by forming pores or disturbing lipid organization. These membrane disruptive mechanisms of AMPs are possible to explain according to the various structure forming pores in the membrane. Some AMPs inhibit DNA and/or RNA synthesis as well as apoptosis induction by reactive oxygen species (ROS) accumulation and mitochondrial dysfunction. Specifically, mitochondria play a major role in the apoptotic pathway. During apoptosis induced by AMPs, cells undergo cytochrome c release, caspase activation, phosphatidylserine externalization, plasma or mitochondrial membrane depolarization, DNA and nuclei damage, cell shrinkage, apoptotic body formation, and membrane blebbing. Even AMPs, which have been reported to exert membrane-active mechanisms, induce apoptosis in yeast. These phenomena were also discovered in tumor cells treated with AMPs. The apoptosis mechanism of AMPs is available for various therapeutics such as antibiotics for antibiotic-resistant pathogens that resist to the membrane active mechanism, and antitumor agents with selectivity to tumor cells.

Effects of the Hinge Region of Cecropin A(1-8)-Melittin 2(1-12), a Synthetic Antimicrobial Peptide on Antibacterial, Antitumor, and Vesicle-Disrupting Activity

  • Shin, Song-Yub;Kang, Joo-Hyun;Jang, So-Yun;Kim, KiI-Lyong;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • 제32권6호
    • /
    • pp.561-566
    • /
    • 1999
  • CA(1-8)-ME(1-12) [CA-ME], composed of cecropin A(1-8) and melittin(1-12), is a synthetic antimicrobial peptide having potent antibacterial and antitumor activities with minimal hemolytic activity. In order to investigate the effects of the flexible hinge sequence, Gly-Ile-Gly, of CA-ME on antibiotic activity, CA-ME and three analogues, CA-ME1, CA-ME2, and CA-ME3, were synthesized. The Gly-Ile-Gly sequence of Ca-ME was deleted in CA-ME1 and replaced with Pro and Gly-Pro-Gly in CA-ME2 and CA-ME3, respectively. CA-ME1 and CA-ME3 showed a significant decrease in antitumor activity and phospholipid vesicle-disrupting ability. However, CA-ME2 showed similar antitumor and vesicle-disrupting activities, as compared with CA-ME. These results suggest that the flexibility or ${\beta}$-turn induced by Gly-Ile-Gly or Pro in the central part of CA-ME may be important in the electrostatic interaction of the N-terminus cationic ${\alpha}$-helical region with the cell membrane surface and the hydrophobic interaction of the C-terminus amphipathic ${\alpha}$-helical region with the hydrophobic acyl chains in the cell membrane. CA-ME3 exhibited lower antitumor and vesicle-disrupting activities than CA-ME and CA-ME2. This result suggests that the excessive ${\beta}$-turn structure caused by the Gly-Pro-Gly sequence in CA-ME3 seems to interrupt ion channel/pore formation in the lipid bilayer. We concluded that the appropriate flexibility or bilayer. We concluded that the appropriate flexibility or ${\beta}$-turn structure provided by the central hinge is responsible for the effective antibiotic activity of the antimicrobial peptides with the helix-hinge-helix structure.

  • PDF

Enhanced Expression and Functional Characterization of the Recombinant Putative Lysozyme-PMAP36 Fusion Protein

  • Rao, Zhili;Kim, So Young;Akanda, Md Rashedunnabi;Lee, Su Jin;Jung, In Duk;Park, Byung-Yong;Kamala-Kannan, Seralathan;Hur, Jin;Park, Jung Hee
    • Molecules and Cells
    • /
    • 제42권3호
    • /
    • pp.262-269
    • /
    • 2019
  • The porcine myeloid antimicrobial peptide (PMAP), one of the cathelicidin family members, contains small cationic peptides with amphipathic properties. We used a putative lysozyme originated from the bacteriophage P22 (P22 lysozyme) as a fusion partner, which was connected to the N-terminus of the PMAP36 peptide, to markedly increase the expression levels of recombinant PMAP36. The PMAP36-P22 lysozyme fusion protein with high solubility was produced in Escherichia coli. The final purified yield was approximately 1.8 mg/L. The purified PMAP36-P22 lysozyme fusion protein exhibited antimicrobial activity against both Gram-negative and Grampositive bacteria (Staphylococcus aureus, Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa, and Bacillus subtilis). Furthermore, we estimated its hemolytic activity against pig erythrocytes as 6% at the high concentration ($128{\mu}M$) of the PMAP36-P22 lysozyme fusion protein. Compared with the PMAP36 peptide (12%), our fusion protein exhibited half of the hemolytic activity. Overall, our recombinant PMAP36-P22 lysozyme fusion protein sustained the antimicrobial activity with the lower hemolytic activity associated with the synthetic PMAP36 peptide. This study suggests that the PMAP36-P22 lysozyme fusion system could be a crucial addition to the plethora of novel antimicrobials.