• Title/Summary/Keyword: cathodoluminescence

Search Result 109, Processing Time 0.026 seconds

Morphological Variation and Luminescence Properties of ZnO Micro/Nanocrystals Synthesized by Thermal Evaporation Method

  • Lee, Won-Jae;Lee, Geun-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.27 no.10
    • /
    • pp.530-533
    • /
    • 2017
  • ZnO micro/nanocrystals with different morphologies were synthesized by thermal evaporation of various zinc source materials in an air atmosphere. Zinc acetate, zinc carbonate and zinc iodide were used as the source materials. No catalysts or substrates were used in the synthesis of the ZnO crystals. The scanning electron microscope(SEM) image showed that the morphology of ZnO crystals was strongly dependent on the source materials, which suggests that source material is one of the key factors in controlling the morphology of the obtained ZnO crystals. Tetrapods, nanogranular shaped crystals, spherical particles and crayon-shaped crystals were obtained using different source materials. The X-ray diffraction(XRD) pattern revealed that the all the ZnO crystals had hexagonal wurtzite crystalline structures. An ultraviolet emission was observed in the cathodoluminescence spectrum of the ZnO crystals prepared via thermal evaporation of Zn powder. However, a strong green emission centered at around 500 nm was observed in the cathodoluminescence spectra of the ZnO crystals prepared using zinc salts as the source materials.

Synthesis and Characterization Of Green- and Yellow-Emitting Zinc Silicate Thin Films Doped with Manganese

  • Cho, Yeon Ki;Kim, Joo Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.546-546
    • /
    • 2013
  • Zinc silicate ($Zn_2SiO_4$) has been identified as a suitable host material for a wide variety of luminescent activators, such as transition metal and rare earth elements. In particular, manganese-activated $Zn_2SiO_4$ exhibits highly efficient photoluminescenceand cathodoluminescence, which allows this material to be used in fluorescent lamps and display applications. In this study, we investigated the green and yellow luminescence from Mn-doped $Zn_2SiO_4$ thin films that were synthesized using radio frequency magnetron sputtering followed by annealing at $600{\sim}1,200^{\circ}C$ The refractive index of the $Zn_2SiO_4$: Mn films showed normal dispersion behavior. It was found that the $Zn_2SiO_4$: Mn films annealed at $800^{\circ}C$ ossessed a mixture of alpha and beta phases. The obtained photoluminescence spectrum consisted of two emission bands centered at 525 nm in the green range and 574 nm in the yellow range. The green luminescence originates from the divalent Mn ions in alpha phase of $Zn_2SiO_4$, while the yellow luminescence comes from the divalent Mn ions in beta phase. The films annealed at and above $900^{\circ}C$ xhibited only the alpha phase. The broad PL excitation band was observed ranging from 220 to 300 nm with a maximum at around 243 nm.

  • PDF

Characteristics of Doped MgO Layer Deposited under Hydrogen Atmosphere

  • Park, Kyung-Hyun;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.375-378
    • /
    • 2006
  • Characteristics of doped MgO layer deposited under hydrogen atmosphere were investigated. Hydrogen gas was introduced during e-beam evaporation of doped MgO and its effects on microstructure, cathodoluminescence, discharge voltages and effective yield of secondary electron emission were examined. The results indicated that the hydrogen influences and doped impurities the concentration and energy levels of defects in MgO layer and that affects the luminance efficiency and discharge delays of the panels significantly.

  • PDF

Discharge characteristics of MgO layer prepared via aqueous solution process

  • Choi, Hak-Nyun;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.379-382
    • /
    • 2006
  • In this study, an attempt was made to form magnesium oxide layer via aqueous solution route of salt precipitation process. A layer with flake morphology was formed from the process and various dopants were added during the forming process. The films formed were characterized using SEM, XRD, and cathodoluminescence measurement. In addition, the discharge characteristics were evaluated using panel tests. The results indicate that MgO film can be formed via the aqueous solution process successfully, of which characteristics are comparable to those of MgO film formed by e-beam evaporation process.

  • PDF

Formation of MgO Thick Film Layer for AC-PDP via Electrophoresis Deposition of Nano-sized MgO Powders

  • Ko, Min-Soo;Kim, Yong-Seog
    • Journal of Information Display
    • /
    • v.8 no.2
    • /
    • pp.25-31
    • /
    • 2007
  • MgO thick film for ac-PDPs was formed via electrophoresis deposition process and its effect on luminance and luminance efficiency were evaluated. The electrophoresis deposition process of MgO thick film was optimized through parametric study and defects levels in MgO powders was evaluated using cathodoluminescence spectra measurements. The results demonstrate a possibility of using MgO thick film as electron emission layer for ac-PDPs.

3D Reconstruction of Internal Zonation in Zircon (저어콘의 내부 누대구조의 3차원적 복원기법)

  • Kim, Sook Ju;Yi, Keewook
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.139-144
    • /
    • 2014
  • A series of the planar cathodoluminescence (CL) and backscattered-electron (BSE) images of magmatic zircon from the Paleozoic Yeongdeok pluton in the southeastern Korean Peninsula were taken using a scanning electron microscope for a 3D reconstruction of internal zonation of zircon. Seven zircon crystals mounted in epoxy were serially polished with average $3{\mu}m$ thickness to their disappearance. Their 3D reconstruction of zonation was performed using the Volume Viewer function in the ImageJ software. The 3D oscillatory zoning pattern of zircon was apparently shown in all the analyzed crystals. This method can further be applied to zircon crystals of multiple growth histories as well as other geological materials.

Characteristics of ZnGa2O4 Phosphor Thin Film with Temperature of Substrate and Annealing (기판온도 및 Annealing에 따른 ZnGa2O4 형광체 박막의 특성)

  • Kim, Yong-Chun;Hong, Beom-Joo;Kwon, Sang-Jik;Lee, Dal-Ho;Kim, Kyung-Hwan;Park, Yong-Seo;Choi, Hyung-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.2
    • /
    • pp.187-191
    • /
    • 2005
  • A ZnGa$_2$O$_4$ phosphor target was synthesized through solid-state reactions at a calcine temperature of 700 $^{\circ}C$ and sintering temperature of 1300 $^{\circ}C$ in order to deposit ZnGa$_2$O$_4$ phosphor thin film at various temperature using rf magnetron sputtering system. A ZnGa$_2$O$_4$ phosphor thin film was deposited on Si(100) substrate and annealed by a rapid thermal processor(RTP) at 700 $^{\circ}C$, for 15 sec. The x-ray diffraction patterns of ZnGa$_2$O$_4$ phosphor target and thin film showed the main peak (311) direction. ZnGa$_2$O$_4$ thin film has better crystalization due to as function of increasing substrate and annealing temperature. The cathodoluminescence(CL) spectrums of ZnGa$_2$O$_4$ phosphor thin film showed the main peak 420 nm wavelength and the maximum intensity at the substrate temperature of 500 $^{\circ}C$ and annealing temperature of 700 $^{\circ}C$, for 15 sec.

Properties of $Y_{2-x}SiO_{5}:Ce_{x}^{3+}$ Phosphor Powder Prepared by Sol-gel Process (Sol-gel법에 의한 $Y_{2-x}SiO_{5}:Ce_{x}^{3+}$ 형광체 제조와 그 특성)

  • Kim, Sang-Mun;Kang, Kyoung-Tae;Kim, Tae-Ok
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.794-798
    • /
    • 2001
  • $Y_{2-x}SiO_5:Ce_x^{3+}$(x=0.002∼0.04) phosphors were prepared by sol-gel process, amorphous crystal phase was observed in calcining dry gel at 800$^{\circ}$C, but pure $X_2$ type of type $Y_2SiO_5$ phase appeared from heat treatment above 1000$^{\circ}$C. Light absorption of tye $Y_2SiO_5$ host lattice occurred at 230∼360nm, and light absorption of the $Y_{2-x}SiO_5:Ce_x^{3+}$ phosphors was observed at 300∼400nm in adding $Ce^{3+}$. $Y_{2-x}SiO_5:Ce_x^{3+}$ phosphors showed maximum emission shoulder at 436nm. Maximum CL intensities of $Y_{2-x}SiO_5:Ce_x^{3+}$ were observed in adding 0.025 $Ce^{3+}$ and the phosphor showed x=0.161, y=0.124 in color coordinate of CIE1931.

  • PDF

Optical properties of epitaxial $Gd_2$O_3:EU^{3+}$luminescent thin films depending on crystallinity ($Gd_2$O_3:EU^{3+}$ 형광체 박막의 결정성에 따른 발광특성 연구)

  • 장문형;최윤기;정권범;황보상우;장홍규;노명근;조만호;손기선;김창해
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.4
    • /
    • pp.275-280
    • /
    • 2003
  • Epitaxial Gd$_2O_3:Eu^{3+}$luminescent thin films have been grout on Si(III) substrates using ionized Cluster Beam Deposition (ICBD). After the film growing, they were implanted and post annealed to change the crystal structure. The initial growth stage was monitored by using in-situ Reflection High Energy Electron Diffraction (RHEED). The formed crystal structure was identified with X-ray diffraction (XRD) technique and Fourier transform infrared (FT-R) spectroscopy. The electronic states variations were investigated by Near Edge X-ray Absorption Fine Structure (NEXAFS). Photoluminescence (PL), Cathodoluminescence (CL). and Vacuum ultraviolet (VUV) spectrum were used for examining the optical properties. We report the optical property changes depending on crystal structure and the electronic states.

Cathodoluminescence Properties of Novel $Mg_2SnO_4$:Mn Phosphor under Low-Voltage Electron Excitation

  • Kim, Kyung-Nam;Jung, Ha-Kyun;Park, Hee-Dong;Kim, Do-Jin
    • Journal of Information Display
    • /
    • v.2 no.3
    • /
    • pp.13-17
    • /
    • 2001
  • The manganese-doped magnesium tin oxide with spinel structure was selected as a green phosphor for FED application and was synthesized by the solid state reaction. Its luminescence properties were investigated under low-voltage electron excitation. The $Mg_2SnO_4$:Mn phosphor showed green emission with the spectrum centered at 500 nm due to energy transfer from $^4T_1$ to $^6A_1$ of $Mn^{2+}$ ion. Optimum Mn concentration was 0.6 mole % and the decay time was shorter than 10 ms.

  • PDF