• Title/Summary/Keyword: cathode reaction

Search Result 408, Processing Time 0.028 seconds

The Electrochemical Characterization of$LiMn_{2-y}M_yO_4$ Cathode Material - II. Charge and Discharge Property and Cyclic Voltametry of $LiMn_{2-y}M_yO_4$ (M=Zn, Mg) ($LiMn_{2-y}M_yO_4$ 정극 활물질의 전기화학적 특성 - II. $LiMn_{2-y}M_yO_4$ (M=Zn, Mg)의 충방전 및 순환전위전류 특성)

  • 정인성;김종욱;구할본;김형곤;손명모;박복기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.4
    • /
    • pp.316-322
    • /
    • 2001
  • Cathode materials $LiMn_{2-y}$$M_{y}$ $O_4$(M=Zn and Mg) were obtained by reacting the mixture of LiOH.$H_2O$, Mn $O_2$ and MgO ar ZnO at 80$0^{\circ}C$ for 36h in an air atmosphere. These materials showed an extended cycle life in lithium-anode cells working at room temperatue in a 3.0 to 4.3V potential window. Among these materials, LiM $n_{1.9}$M $g_{0.1}$ $O_4$ showed the best cycle performance in terms of the capacity and cycle life. The discharge capacities of the cathode for the Li/LiM $n_{1.9}$ $M_{0.1}$ $O_4$ cell at the 1st cycle and at the 70th cycle were about 120 and 105mAh/g, respectively. This cell capacity is retained by 88% after 70th cycle. In cyclic voltammetry measurement, all cells revealed tow oxidation peaks and reduction peaks. However, Li/$LiMn_{2-y}$$M_{y}$ $O_4$ cell substituted with Zn and Mg showed new reaction peak during reduction reaction.eaction.ion.ion.

  • PDF

Electrical Conduction in Y2O3-doped SrZrO3-metal Electrode System (Y2O3가 도핑된 SrZrO3-금속전극계의 전기전도 특성)

  • Baek, Hyun-Deok;Lee, Poong-Hun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.367-376
    • /
    • 2002
  • Electrical conduction in $SrZr_{1-x}Y_xO_{3-\delta}$((x=0.05, 0.10)-metal electrode system was investigated by impedance spectroscopy and two-probe d.c. conductivity measurement. Electrode conductivity in anodic direction varies with $P_W^{1/2}$( and that in cathodic direction with $P_{O2}^{1/4}$ in oxidizing atmosphere. In hydrogen atmosphere, the addition of water vapor increased the electrode conductivity both in anodic and cathodic direction. Increasing dopant concentration from 5 to 10% showed a more than four times increase in anodic conduction as well as bulk conduction of the solid electrolyte. This observation implies that unfilled oxygen vacancy concentration increases rapidly as the dopant content increases in humid atmosphere. The activation energy of cathodic conduction in Pt and Ag electrode was nearly same below $800^{\circ}C$ which means the rate of cathodic reaction is determined by the reaction in the electrolyte surface rather than on the metal electrodes.

Materials Chemical Point of View for Durability Issues in Solid Oxide Fuel Cells

  • Yokokawa, Harumi;Horita, Teruhisa;Yamaji, Katsuhiko;Kishimoto, Haruo;Brito, M.E.
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.26-38
    • /
    • 2010
  • Degradation in Solid Oxide Fuel Cell performance can be ascribed to the following fundamental processes from the materials chemical point of view; that is, diffusion in solids and reaction with gaseous impurities. For SOFC materials, diffusion in solids is usually slow in operation temperatures $800\sim1000^{\circ}C$. Even at $800^{\circ}C$, however, a few processes are rapid enough to lead to some degradations; namely, Sr diffusion in doped ceria, cation diffusion in cathode materials, diffusion related with metal corrosion, and sintering of nickel anodes. For gaseous impurities, chromium containing vapors are important to know how the chemical stability of cathode materials is related with degradation of performance. For LSM as the most stable cathode among the perovskite-type cathodes, electrochemical reduction reaction of $CrO_3$(g) at the electrochemically active sites is crucial, whereas the rest of the cathodes have the $SrCrO_4$ formation at the point where cathodes meet with the gases, leading to rather complicated processes to the degradations, depending on the amount and distribution of reacted Cr component. These features can be easily generalized to other impurities in air or to the reaction of nickel anodes with gaseous impurities in anode atmosphere.

Synthesis and Oxygen Reduction Reaction Characteristics of Multi-Walled Carbon Nanotubes Supported PtxM(1-x) (M = Co, Cu, Ni) Alloy Catalysts for Polymer Electrolyte Membrane Fuel Cell (다중벽 탄소 나노 튜브에 담지한 PtxM(1-x)(M = Co, Cu, Ni) 합금촉매의 제조 및 고분자 전해질 연료전지에서 산소환원 특성)

  • Jung, Dong-Won;Park, Soon;Ahn, Chi-Yeong;Choi, Seong-Ho;Kim, Jun-Bom
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.667-673
    • /
    • 2009
  • The electrocatalytic characteristics of oxygen reduction reaction of the $PtxM_{(1-x)}$ (M = Co, Cu, Ni) supported on multi-walled carbon nanotubes (MWNTs) have been evaluated in a Polymer Electrolyte Membrane Fuel Cell (PEMFC). The $Pt_xM_{(1-x)}$/MWNTs catalysts with a Pt : M atomic ratio of about 3 : 1 were synthesized and applied to the cathode of PEMFC. The crystalline structure and morphology images of the $Pt_xM_{(1-x)}$ particles were characterized by X-ray diffraction and transmission electron microscopy, respectively. The results showed that the crystalline structure of the Pt alloy particles in Pt/MWNTs and $Pt_xM_{(1-x)}$/MWNTs catalysts are seen as FCC, and synthesized $Pt_xM_{(1-x)}$ crystals have lattice parameters smaller than the pure Pt crystal. According to the electrochemical surface area (ESA) calculated with cyclic voltammetry analysis, $Pt_{0.77}Co_{0.23}$/MWNTs catalyst has higher ESA than the other catalysts. The evaluation of a unit cell test using Pt/MWNTs or $Pt_xM_{(1-x)}$/MWNTs as the cathode catalysts demonstrated higher cell performance than did a commercial Pt/C catalyst. Among the MWNTs-supported Pt and $Pt_xM_{(1-x)}$ (M = Co, Cu, Ni) catalysts, the $Pt_{0.77}Co_{0.23}$/MWNTs shows the highest performance with the cathode catalyst of PEMFC because they had the largest ESA.

Analytical Investigation of Water Transport

  • Um, Suk-Kee;Lee, Kwan-Soo;Jung, Hye-Mi
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2250-2254
    • /
    • 2007
  • Comprehensive analytical models focusing on the anode water loss, the cathode flooding, water equilibrium, and water management strategy are developed for polymer electrolyte fuel cells. Analytical solutions presented in this study are compared with two-dimensional computational results and shows a good agreement in predicting those critical characteristics of water. General features of water concentration profile as a function of membrane thickness and current density are presented to illustrate the net effect of the back-diffusion of water from the cathode to anode and the water production by the cathode catalytic reaction on water transport over a fuel cell domain. As one of practical applications, the required humidity level of feed streams for full saturation at the channel outlets are investigated as a function of the physical operating condition. These analytical models can provide good understanding on the characteristic water

  • PDF

Relative Comparison of Cathode Polarizations in Solid Oxide Fuel Cells Using the Spreading Concept in AC 2 Point Impedance Spectroscopy

  • Lee, Byung-Kook;Kim, Eui-Hyun;Hwang, Jin-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.2
    • /
    • pp.163-167
    • /
    • 2013
  • A modified two-point impedance spectroscopy technique exploits the geometric constriction between an electrolyte and a cathode with an emphasis on semispherical-shaped electrolytes. The spatial limitation in the electrolyte/electrode interface leads to local amplification of the electrochemical reaction occurring in the corresponding electrolyte/electrode region. The modified impedance spectroscopy was applied to electrical monitoring of a YSZ ($Y_2O_3$-stabilized $ZrO_2$)/SSC ($Sm_{0.5}Sr_{0.5}CoO_3$) system. The resolved bulk and interfacial component was numerically analyzed in combination with an equivalent circuit model. The effectiveness of the "spreading resistance" concept is validated by analysis of the electrode polarization in the cathode materials of solid oxide fuel cells.

An Effect of the Overlapping with the Anode and Cathode Flow Channel to PEMFC Performance (연료극과 공기극 유로의 겹침이 PEMFC 성능에 미치는 영향)

  • Lee, Ji-Hong;Lee, Myeong-Yong;Lee, Sang-Seok;Lee, Do-Hyung
    • New & Renewable Energy
    • /
    • v.5 no.1
    • /
    • pp.18-25
    • /
    • 2009
  • PEMFC (Proton Exchange Membrane Fuel Cell) is a low temperature fuel cells which are high efficient and clean energy. But it has many problems like economical efficiency or durability. Because of this reason, many researchers challenge various view points. One of challenge is the flow channel design and many researchers develop new flow channel design. In addition to most of them have the anode and cathode's flow channel overlapped almost perfectly. In this case, the electrochemical reaction is almost done by the inertial force of flow. So we study on the effect of the anode and cathode's flow channel which aren't overlapped perfectly, have more diffusion effect, to PEMFC performance using CFD.

  • PDF

Study on the cathode delamination of solid oxide fuel cell (고체산화물 연료전지의 공기극 박리 현상에 관한 연구)

  • Park, Kwang-Jin;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.139-142
    • /
    • 2009
  • In this study, the performance degradation of SOFC single cell caused by the delamination between a cathode and an electrolyte is investigated. As the delamination rate increases, the voltage sharply decreases due to the decrease of reaction sites and losses increase. The current is concentrated to the intact area so that the current density is increased and the ohmic loss and the activation loss become higher. Most part of loss is due to the ohmc loss of electrolyte.

  • PDF

Theoretical and Practical Aspects of Pb-Sn Alloy Plating (Pb-Sn 합금도금의 이론 및 실제적 경향)

  • Paik, Young-Nam
    • Journal of Surface Science and Engineering
    • /
    • v.12 no.3
    • /
    • pp.161-166
    • /
    • 1979
  • Theoretical and practical aspects are investigated for electrochemical behavious, plating processes and the structures of electrodeposit of Pb-Sn binary alloy plating through numerous literatures in this report. The anodic and cathodic electrode reaction mechanisms of Pb and Sn could co-deposit and make Pb-Sn alloy deposit from the results of cathode current density-cathode potential curves of Pb, Sn and Pb-Sn alloys in fluoborate solutions. The compositions of the best alloy plating solutions are obtained for the purpose of bearing, anticorrosion and solder plating. In general, the casting anodes of Pb-Sn alloys are used, but separated anodes of Pb and Sn pure metal are used in order to obtain the fine compositions of Pb-Sn alloy deposits. The electrodeposits of Pb-Sn alloy are in nonequilibrium state and saturated solid solutions. Thus, ${\beta}$-phase (Sn-phase) is precipitated by heat treatment. The texture and structure of the electrodeposit are associated with the surface energies of deposit lattice planes and with the cathode polarization. The electrodeposit of Pb-Sn alloy is shown as lamellar structure.

  • PDF

Characterization of Ln0.8Sr0.2CoO3-δ (Ln=Gd, Nd, Pr, Sm, or Yb) as Cathode Materials for Low-Temperature SOFCs

  • Choi, Jung-Woon;Kang, Ju-Hyun;Kim, Han-Ji;Yoo, Kwang-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.758-763
    • /
    • 2006
  • Perovskites with nominal compositions $Ln_{0.8}Sr_{0.2}CoO_{3-\delta}$ (Ln=Gd, Nd, Pr, Sm, or Yb) were fabricated as cathode materials using a solid-state reaction method for low-temperature operating Solid-Oxide Fuel Cells (SOFCs). X-ray diffraction analysis and microstructure observation for the sintered samples were performed. The ac complex impedance was measured in the temperature range of $600-900^{\circ}C$ in air and fitted with a Solartron ZView program. The crystal structure, microstructure, electrical conductivity, and polarization resistance of $Ln_{0.8}Sr_{0.2}CoO_{3-\delta}$ were characterized systematically.