• Title/Summary/Keyword: cathode reaction

Search Result 408, Processing Time 0.026 seconds

Electrochemical Catalytic Behavior of Cu2O Catalyst for Oxygen Reduction Reaction in Molten Carbonate Fuel Cells

  • Song, Shin Ae;Kim, Kiyoung;Lim, Sung Nam;Han, Jonghee;Yoon, Sung Pil;Kang, Min-Goo;Jang, Seong-Cheol
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.195-201
    • /
    • 2018
  • To enhance the performance of cathodes at low temperatures, a Cu-coated cathode is prepared, and its electrochemical performance is examined by testing its use in a single cell. At $620^{\circ}C$ and a current density of $150mAcm^{-2}$, a single cell containing the Cu-coated cathode has a significantly higher voltage (0.87 V) during the initial operation than does that with an uncoated cathode (0.79 V). According to EIS analysis, the high voltage of the cell with the Cu-coated cathode is due to the dramatic decrease in the high-frequency resistance related to electrochemical reactions. From XPS analysis, it is confirmed that the Cu is initially in the form of $Cu_2O$ and is converted into CuO after 150 h of operation, without any change in the state of the Ni or Li. Therefore, the high initial cell voltage is confirmed to be due to $Cu_2O$. Because $Cu_2O$ is catalytically active toward $O_2$ adsorption and dissociation, $Cu_2O$ on a NiO cathode enhances cell performance and reduces cathode polarization. However, the cell with the Cu-coated cathode does not maintain its high voltage because $Cu_2O$ is oxidized to CuO, which demonstrates similar catalytic activity toward $O_2$ as NiO.

Charge-discharge Behaviour of Lithium Ion Secondary Battery Using LiCo$O_2$ Synthesized by a Solution Phase Reaction (액상 반응에 의해 합성한 리튬코발트산화물을 이용한 Lithium ion 2차전지의 충방전 특성)

  • 김상필;조정수;박정후;윤문수;심윤보
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.11
    • /
    • pp.1049-1054
    • /
    • 1998
  • The LiCo$O_2$ powder was synthesized by a solution phase reaction. This shows a high (003) peak intensity and low (104) or (101) peak intensities in X-ray diffraction spectra. The LiCo$O_2$/Li cell shows an initial discharge capacity of 102.9mAh/g and an average discharge potential or 3.877V at a current density of 50mA/g between 3.0~4.2V. The peaks of dQ/dV plot are associated with Li ion intercalation/deintercalation reaction. To evaluate the cycleability of an actual battery system, cylindrical lithium ion cell was manufactured using graphitized MPCF anode and LiCoO$_2$ cathode. After 100th cycle, this cel maintains 80% capacity of 10th cycle value. The LiCoO$_2$/MPCF cell has a high discharge voltage of 3.6~3.7V and a good cycle life performance on cycling between 4.2~2.7V.

  • PDF

Production of Fine Tantalum Powder by Electronically Mediated Reaction (EMR) (도전체 매개반응(EMR)법에 의한 미세 Ta 분말 제조)

  • Park Il;Lee Chuel Ro;Lee Oh Yeon
    • Korean Journal of Materials Research
    • /
    • v.14 no.10
    • /
    • pp.719-724
    • /
    • 2004
  • Production of fine tantalum powder by calciothermic reduction of tantalum oxides ($Ta_{2}O_5$) pellet through an electronically mediated reaction (EMR) has been investigated. $Ta_{2}O_5$ pellet feed and reductant calcium-nickel (Ca-Ni) alloy were charged into electronically isolated locations in a molten $CaCl_2$ bath. The current flow through an external path between the feed (cathode) and reductant (anode) locations was monitored. The current approximately 4.7A was measured during the reaction in the external circuit connecting cathode and anode location. Tantalum powder with approximately 99 $mass\%$ purity was readily obtained after each experiment. Tantalum powder by EMR using $Ta_{2}O_5$ pellet feed was fine compared with that of metal powder by metallothermic reduction and EMR using $Ta_{2}O_5$ powder feed.

Production of Titanium Powder by Electronically Mediated Reaction (EMR) (도전체 매개반응(EMR)법에 의한 Ti 분말 제조)

  • Park Il;Chu Yong Ho;Lee Chul Ro;Lee Oh Yeon
    • Korean Journal of Materials Research
    • /
    • v.14 no.12
    • /
    • pp.857-862
    • /
    • 2004
  • Production of titanium powder directly from tantalum oxides ($TiO_2$) pellet through an electronically mediated reaction (EMR) by calciothermic reduction has been investigated. Feed material ($TiO_2\;pellet$) and reductant (Ca-Ni alloy) were charged into electronically isolated locations in a molten calcium chloride ($CaCl_2$) bath at $950^{\circ}C$. The current flow through an external circuit between the feed (cathode) and reductant (anode) locations was monitored during the reduction of $TiO_2$. The current approximately 3.2A was measured during the reaction in the external circuit connecting cathode and anode location. After the reduction experiment, pure titanium powder with low nickel content was obtained even though Ca-Ni alloy was used as a reductant. These results demonstrate that titanium powder can be produced without direct physical contact between the feed and reductant. In certain experimental conditions, pure titanium powder with approximately $99.5\;mass\%$ purity was successfully obtained.

A Review of Ac-impedance Models for the Analysis of the Oxygen Reduction Reaction on the Porous Cathode Electrode for Solid Oxide Fuel Cell

  • Kim, Ju-Sik;Pyun, Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.2
    • /
    • pp.106-114
    • /
    • 2005
  • This article covers the theoretical ac-impedance models for the analysis of oxygen reduction on the porous cathode electrode f3r solid oxide fuel cell (SOFC). Firstly, ac-impedance models were explained on the basis of the mechanism of oxygen reduction, which were classified into the rate-determining steps; (i) adsorption of oxygen atom on the electrode surface, (ii) diffusion of adsorbed oxygen atom along the electrode surface towards the three-phase (electrode/electrolyte/gas) boundaries, (iii) surface diffusion of adsorbed oxygen atom m ixed with the adsorption reaction of oxygen atom on the electrode surface and (iv) diffusion of oxygen vacancy through the electrode coupled with the charge transfer reaction at the electrode/gas interface. In each section for ac-impedance model, the representative impedance plots and the interpretation of important parameters attributed to the oxygen reduction reaction were explained. Finally, we discussed in detail the applications of the proposed theoretical ac-impedance models to the real electrode of SOFC system.

Synthesis of Azobenzene Derivatives via Controlled Potential Cathodic Electrolysis (조절전위법 음전극 유기반응을 이용한 아조벤젠 유도체들의 합성)

  • Kim Byeong Hyo;Choi Yong Rack;Kim Dae Ho;Han Rongbi;Baik Woonphil;Jun Young Moo
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.209-212
    • /
    • 1999
  • Using an H-type divided cell, reductive coupling reaction of nitroarene toward azobenzenes in a mild condition was successfully accomplished by the controlled potential cathodic electrolysis reaction. Optimum reaction potential of each reaction was determined based on cyclic voltammetric behavior in methanol solution at Pb or Pt cathode, and Pt anode. In most cases, reductive coupling reactions were successful with excellent yields regardless of the position and the character of the substituents.

Numerical analysis on thermal runaway by cathode active materials in lithium-ion batteries (리튬이온전지 열폭주에 대해 양극활물질이 미치는 영향에 대한 수치해석적 연구)

  • Gang, Myung-Bo;Kim, Nam-Jin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.2
    • /
    • pp.1-10
    • /
    • 2021
  • Lithium-ion batteries with high energy density, long cycle life and other advantages, have been widely used to energy storage systems(ESS). But as ESS fires frequently occur, the safety concern has become the main obstacle that hinders the large-scale applications of lithium-ion batteries. Especially, thermal runaway is the key scientific problem in battery safety research. Therefore, in this study, we performed a numerical analysis on the thermal runaway phenomenon of NCM111, NCM523 and NCM622 batteries using a two-dimensional analysis model. The results show that the two-dimensional simulation results are generally matched with three-dimensional simulation. Also, In the case of NCM111 with a low Ni content in the temperature range used in this study, thermal runaway phenomenon does occurred very slowly, but as the Ni content is increased, the thermal runaway phenomenon occurs rapidly and the thermal stability tends to be decreased. And, in NCM523 and NCM622 batteries, chain reactions occur almost simultaneously, but in the case of NCM111 battery, it is found that after the SEI(Solid Electrolyte Interface) layer decomposition reaction, the cathode-electrolyte reaction is appeared sequentially. After that, the anodic decomposition reaction is increased and leads to the thermal runaway reaction.

Charge-discharge Properties of $LiMnO_2$ as a Function of Heat Treatment Temperature for Lithium Polymer Batteries (리튬 폴리머 전지용 $LiMnO_2$의 열처리 온도에 따른 충방전 특성)

  • Cho, Young-Jai;Wee, Sung-Dong;Kim, Sang-Ki;Gu, Hal-Bon;Gu, Jong-Uk;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.23-26
    • /
    • 2001
  • The properties of $LiMnO_2$ was studied as a cathode active material for lithium polymer batteries. $LiMnO_2$ cathode active materials were synthesized by the reaction of $LiOH{\cdot}H_2O$ and $Mn_2O_3$ at various temperature under argon atmosphere. The powders were characterized by the X -ray diffraction. For lithium polymer battery applications, the $LiMnO_2$ cell was characterized electrochemically by charge-discharge experiments and a.c. impedance spectroscopy. And the relationship between the characteristics of powders and electrochemical properties was studied in this research. A maximum discharge capacity of 160~170 mAh/g for o-$LiMnO_2$ cell was achieved. The capacity of o-$LiMnO_2$ electrode demonstrated better than of the spinel $LiMnO_2$ by solid-state reaction.

  • PDF

Effect of ball-milling condition on electrochemical properties of $LiFePO_4-C$ cathode materials

  • Jin, Bo;Jin, En-Mei;Park, Kyung-Hee;Park, Bok-Kee;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.338-338
    • /
    • 2007
  • $LiFePO_4-C$ cathode materials were prepared by hydrothermal reaction and ball-milling. In order to enhance the electronic conductivity of $LiFePO_4$, 10% of acetylene black was added. During the ball-milling, different revolutions per minute (100, 200 and 300 rpm) was carried out. The structural and morphological performance of $LiFePO_4-C$ powders were characterized by X-ray diffraction and scanning electron microscope. The X-ray diffraction results demonstrated that $LiFePO_4-C$ powders had an orthorhombic olivine-type structure with a space group of Pnma. $LiFePO_4-C$ batteries were characterized electrochemically by charge/discharge experiments. The charge/discharge experiments indicated that $LiFePO_4-C$/Li batteries by 300 rpm of the ball-milling exhibited the best electrochemical performance with the discharge capacity of 126mAh/g at a discharge rate of $0.1mA/cm^2$.

  • PDF

Numerical Simulation of the Oscillating Flow Effect in the Channel of Polymer Electrolyte Membrane Fuel Cell (왕복 유동을 통한 확산증대 효과가 연료전지 성능에 미치는 영향에 대한 수치해석)

  • Kim, Jongmin;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.20 no.4
    • /
    • pp.7-13
    • /
    • 2018
  • This study investigates the enhancement of the oxygen diffusion rate in the cathode channel of a proton exchange membrane fuel cell (PEMFC) by pure oscillating flow, which is the same as the mechanism of human breathe. Three-dimensional numerical simulation, which has the full model of the fuel cell including electrochemical reaction, ion and electronic conduction, mass transfer and thermal variation and so on, is performed to show the phenomena in the channel at the case of a steady state. This model could analysis the oscillating flow as a moving mesh calculation coupled with electrochemical reaction on the catalyst layer, however, it needs a lot of calculation time for each case. The two dimensional numerical simulation has carried on for the study of oscillating flow effect in the cathode channel of PEMFC in order to reduce the calculation time. This study shows the diffusion rate of the oxygen increased and the emission rate of the water vapor increased in the channel by oscillating flow without any forced flow.