• Title/Summary/Keyword: cathode interlayer

Search Result 24, Processing Time 0.017 seconds

Investigations of LSM-YSZ as Air Electrode Materials for Solid Oxide Fuel Cells (고체산화물 연료전지용 공기극재료로써의 LSM-YSZ 전극 연구)

  • Lee, Yu-Gi;Kim, Jeong-Yeol;Lee, Yeong-Gi;Park, Dong-Gu;Jo, Beom-Rae;Park, Jong-Wan;Visco, Steven J.
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1075-1082
    • /
    • 1999
  • Composite air electrodes of 50/50 vol% LSM- YSZ where LSM =$\textrm{La}_{1-x}\textrm{Sr}_{x}\textrm{MnO}_{3}$(0$\leq$x$\leq$0.5) were prepared by colloidal deposition technique. The electrodes were then examined by scanning electron microscopy (SEM) and studied by ac impedance spectroscopy in order to improve the performance of a solid oxide fuel cell (SOFC). Reproducible impedance spectra were confirmed by using the improved cell, consisting of LSM- YSZ/YSZ/LSM-YSZ. These spectra were a strong function of operating temperature and the stable conditions for the cells were typically reached at $900^{\circ}C$. The typical spectra measured for an air//air cell at $900^{\circ}C$ were composed of two arcs. Addition of YSZ to the LSM electrode led to a pronounced decrease in cathodic resistivity of LSM-YSZ composite electrodes. Polishing the electrolyte surface to eliminate the influences of surface impurities could further reduce cathode resistivity. The cathodic resistivity of the LSM-YSZ electrodes with catalytic interlayer (Ni or Sr) was much smaller than that of LSM-YSZ electrodes without catalytic interlayer. In addition, the cathodic resistivity of the LSM-YSZ electrodes was a strong function of composition of electrode materials, the electrolyte geometry, and applied current.

  • PDF

Vanadium Oxide Nanomaterials Prepared Using Urea and Formic Acid as Cathodes for Lithium Batteries (우레아 및 포름산을 이용한 바나듐 산화물 나노소재의 합성 및 전기화학적 특성)

  • Park, Su-Jin;Lee, Man-Ho;Park, Heai-Ku
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.211-216
    • /
    • 2010
  • $(NH_4)_{0.3}V_2O_5$ nanorods and $V_2O_5$ nanosheets have been synthesized by the reaction of $V_2O_5$ gel via homogeneous precipitation process employing urea and formic acid. The electrochemical and chemical characteristics of these nanomaterials have been investigated using TGA, SEM, FT-IR, XRD, and LSV. The interlayer distance of $(NH_4)_{0.3}V_2O_5$ was about $10.7{\AA}$, and that of $V_2O_5$ synthesized by using formic acid was $14.2{\AA}$. The surface morphology of $(NH_4)_{0.3}V_2O_5$ and $V_2O_5$ showed features that looked like nanorods and nanosheets, respectively. Specific capacity of $(NH_4)_{0.3}V_2O_5$ nanorods prepared at $95^{\circ}C$ was at least 280 mAh/g at 10 mA/g discharge rate.

A performance study of organic solar cells by electrode and interfacial modification (전극과 계면간의 개질에 의한 유기태양전지의 성능 연구)

  • Kang, Nam-Su;Eo, Yong-Seok;Ju, Byeong-Kwon;Yu, Jae-Woong;Chin, Byung-Doo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.67-67
    • /
    • 2008
  • Application of organic materials with low cost, easy fabrication and advantages of flexible device are increasing attention by research work. Recently, one of them, organic solar cells were rapidly increased efficiency with regioregular poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyricacidmethylester (PCBM) used typical material. To increased efficiency of organic solar cell has tried control of domain of PCBM and crystallite of P3HT by thermal annealing and solvent vapor annealing. [4-6] In those annealing effects, be made inefficiently efficiency, which is increased fill factor (FF), and current density by phase-separated morphology with blended P3HT and PCBM. In addition, increased conductivity by modified hole transfer layer (HTL) such as Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), increased both optical and conducting effect by titanium oxide (TiOx), and changed cathode material for control work function were increased efficiency of Organic solar cell. In this study, we had described effect of organic photovoltaics by conductivity of interlayer such as PEDOT:PSS and TCO (Transparent conducting oxide) such as ITO, which is used P3HT and PCBM. And, we have measured with exactly defined shadow mask to study effect of solar cell efficiency according to conductivity of hole transfer layer.

  • PDF

Properties of ZrO2 Gas Barrier Film using Facing Target Sputtering System with Low Temperature Deposition Process for Flexible Displays (플렉서블 디스플레이용 저온공정을 갖는 대향 타겟식 스퍼터링 장치를 이용한 ZrO2 가스 차단막의 특성)

  • Kim, Ji-Hwan;Cho, Do-Hyun;Sohn, Sun-Young;Kim, Hwa-Min;Kim, Jong-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.425-430
    • /
    • 2009
  • $ZrO_2$ film was deposited by facing target sputtering (FTS) system on polyethylene naphthalate (PEN) substrate as a gas barrier layer for flexible organic light emitting devices (FOLEDs), In order to control the heat of the FTS system caused by the ion bombardment in the cathode compared with the conventional sputtering system, the process characteristics of the FTS apparatus are investigated under various sputtering conditions such as the distance between two targets ($d_{TT}$), the distance between the target and the substrate ($d_{TS}$), and the deposition time. The $ZrO_2$ film by the FTS system can reduce the damage on the films because the ion bombardment with high-energy particles like gamma-electrons, Moreover, the $ZrO_2$ film with optimized condition ($d_{TT}$=140 mm) as a function of the distance from center to edge showed a very uniform thickness below 5 % for a deposition time of 3 hours, which can improve the interface property between the anode and the plastics substrate for flexible displays, It is concluded that the $ZrO_2$ film prepared by the FTS system can be applied as a gas barrier layer or an interlayer between the anode and the plastic substrate with good properties of an uniform thickness and a low deposition-temperature.