Vanadium Oxide Nanomaterials Prepared Using Urea and Formic Acid as Cathodes for Lithium Batteries

우레아 및 포름산을 이용한 바나듐 산화물 나노소재의 합성 및 전기화학적 특성

  • Park, Su-Jin (Department of Applied Chemistry, Kyungpook National University) ;
  • Lee, Man-Ho (Department of Applied Chemistry, Kyungpook National University) ;
  • Park, Heai-Ku (Department of Chemical System Engineering, Keimyung University)
  • 박수진 (경북대학교 공과대학 응용화학과) ;
  • 이만호 (경북대학교 공과대학 응용화학과) ;
  • 박희구 (계명대학교 공과대학 화학시스템공학과)
  • Received : 2009.12.30
  • Accepted : 2010.01.22
  • Published : 2010.04.10

Abstract

$(NH_4)_{0.3}V_2O_5$ nanorods and $V_2O_5$ nanosheets have been synthesized by the reaction of $V_2O_5$ gel via homogeneous precipitation process employing urea and formic acid. The electrochemical and chemical characteristics of these nanomaterials have been investigated using TGA, SEM, FT-IR, XRD, and LSV. The interlayer distance of $(NH_4)_{0.3}V_2O_5$ was about $10.7{\AA}$, and that of $V_2O_5$ synthesized by using formic acid was $14.2{\AA}$. The surface morphology of $(NH_4)_{0.3}V_2O_5$ and $V_2O_5$ showed features that looked like nanorods and nanosheets, respectively. Specific capacity of $(NH_4)_{0.3}V_2O_5$ nanorods prepared at $95^{\circ}C$ was at least 280 mAh/g at 10 mA/g discharge rate.

우레아와 포름산을 이용한 균일침전법으로 $(NH_4)_{0.3}V_2O_5$$V_2O_5$ 나노소재를 합성한 후 TGA, SEM, FT-IR, XRD, 선형 전압전류법 등을 이용하여 물성과 전기화학적 특성을 조사하였다. 평균 층간 거리는 우레아 첨가 유무에 따라 $10.7{\AA}$, $14.2{\AA}$로 각각 나타났다. 또한 표면구조는 합성 시 우레아가 첨가된 소재는 나노로드, 포름산만 첨가된 시료는 나노쉬트 모양의 단위체가 형성되었다. $95^{\circ}C$에서 우레아를 첨가하여 제조한 $(NH_4)_{0.3}V_2O_5$ 나노소재의 전지용량은 평균 280 mAh/g 이상이었다.

Keywords

References

  1. G. A. Ozin, Adv. Mater., 4, 612 (1992) https://doi.org/10.1002/adma.19920041003
  2. S. lijima, Nature, 56, 354 (1991) https://doi.org/10.1038/056354a0
  3. A. K, Cheetham and P. S. H. Grubstein, Mater. Today, 6, 16 (2003)
  4. K. M. Abraham, Electrochim. Acta, 38, 1233 (1993) https://doi.org/10.1016/0013-4686(93)80054-4
  5. D. Guyomard and J. M. Tarascon, J. Electrochem. Soc., 139, 937 (1992) https://doi.org/10.1149/1.2069372
  6. V. Manev, A. Momchilov, A. Nassalevska, and A. Kozawa, J. Power Source, 41, 305 (1993) https://doi.org/10.1016/0378-7753(93)80048-T
  7. P. M. Ajayan, O. Stephan, P. Redlich, and C. Colliex, Nature, 375, 564 (1995) https://doi.org/10.1038/375564a0
  8. K. S. Pillai, F. Krumeich, H. J. Muhr, M. Niederberger, and R. Nesper, Solid State Ionics, 185, 141 (2001)
  9. H. X. Li, K. F. Jiao, H. T. Yuan, M. Zhang, J. Guo, L. Q. Wang, M. Zhao, and Y. M. Wang, Electrochem. Communications, 8, 1693 (2006) https://doi.org/10.1016/j.elecom.2006.03.017
  10. C. J. Fontenot, J. W. Wiench, M. Pruski, and G. L. Schrader, J. Phys. Chem. B, 104, 11622 (2000) https://doi.org/10.1021/jp0021897
  11. W. H. R. Shaw and J. Bordeaux, J. Am. Chem. Soc., 77, 4729 (1955) https://doi.org/10.1021/ja01623a011
  12. J. Subrt, V. Stengl, S. Bakardjieva, and L. Szatmary, Powder Technology, 169, 33 (2006) https://doi.org/10.1016/j.powtec.2006.07.009
  13. P. Liu, I. L. Moudrakovski, J. Liu, and A. Sayari, Chem. Mater., 9, 2513 (1997) https://doi.org/10.1021/cm970067u
  14. H.-K. Park, W. H. Smyrl, and M. D. Ward, J. Electrochem. Soc., 142, 1068 (1995) https://doi.org/10.1149/1.2044133