• Title/Summary/Keyword: catechol 2

Search Result 295, Processing Time 0.034 seconds

Characterization of 2-hydroxymuconic semialdehyde dehydrogenase from Burkholderia cepacia G4

  • A. Matta Reddy;Min, Kyung-Rak;Kim, Young-Soo
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.218.2-219
    • /
    • 2003
  • 2-Hydroxymuconic semialdehyde dehydrogenase catalyzes the conversion of 2-hydroxymuconic semialdehyde (HMS) to an enol form of 4-oxalocrotonate which is a step in the catechol-meta cleavage pathway. A tomC gene encoding 2-HMS dehydrogenase of Burkholderia cepacia G4, a soil bacterium that can grow on toluene, cresol, phenol or tricholoro ethylene, is identified in between catechol 2,3-dioxygenase gene and HMS hydrolase gene, its sequence is analysed and the enzyme is characterised. (omitted)

  • PDF

Analysis of N- Terminal Amino Acid Sequence of Catechol 2,3-dioxygenase from Aniline Degrading Delftia sp. JK-2 (Aniline 분해세균 Delftia sp. JK-2에서 분리된 Catechol 2,3-dioxygenase의 N-말단 아미노산 서열 분석)

  • Hwang Seon-Young;Kahng Hyung-Yeel;Oh Kye-Heon
    • Korean Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.13-17
    • /
    • 2005
  • The aim of this work was to investigate the N-terminal amino acid sequence of catechol 2,3-dioxygenase isolated from Delftia sp. JK-2, which could utilize aniline as sole carbon, nitrogen and energy source. Molecular weight of the enzyme was determined to approximately 35 kDa by SDS-PAGE. N-terminal amino acid sequence of C2,3O from strain JK-2 was $^1MGVMRIGHASLKVMDMDAAVRHYENV^{26}$, and exhibited high sequence similarity with that of C2,3O from Pseudomonas sp., Comamonas sp. JS765, Comamonas test-osteroni, or Burkholderia sp. RP007. Approximately 950-bp C2,3O was obtained through PCR using the primers derived from N-terminal amino acid sequence. Analysis of the DNA sequence revealed that the deduced 296 amino acid sequences were determined, and it showed $100\%$ identity with C2,3O from Pseudomonas sp. AW-2 and $97\%$ similarity with Comamonas sp. JS765.

Comparison of the Flavonoid and Urushiol Content in Different Parts of Rhus verniciflua Stokes Grown in Wonju and Okcheon (원주산과 옥천산 참옻나무의 부위별 flavonoid 및 urushiol 함량 비교)

  • Lee, Won-Jae;Kang, Ji-Eun;Choi, Ji-Ho;Jeong, Seok-Tae;Kim, Myung-Kon;Choi, Han-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.158-163
    • /
    • 2015
  • Fustin comprised >98 and 73.0-86.7% of the total flavonoid content in the bark, and the stems and lignum of Rhus verniciflua, respectively. The butein, fisetin, and sulfuretin content varied between 0.31-2.17, 0.27-3.32, and 0.15-0.80 mg/g on a dry weight basis, respectively, in different parts of Rhus verniciflua. The urushiol content was 5.09-6.29, 55.05-56.30, and 0.38-0.39 mg/100 g on a dry weight basis in the stems, bark, and lignum, respectively. This showed that the bark of the tree had the highest urushiol content. C15:3 (pentadecatrienyl catechol), C15:1 (pentadecenyl catechol), and C15:2 (pentadecadienyl catechol) comprised 63, 33-35, and 2-3% of urushiol congeners in the tree bark, respectively.

The Interaction of Phenylthiourea Derivatives as Catechol Oxidase Inhibitors by Molecular Mechanics Simulation (페닐티오우레아 유도체와 카테콜 산화효소와의 상호작용에 대한 분자역학적 모의실험)

  • Park, Kyung Lae
    • YAKHAK HOEJI
    • /
    • v.60 no.2
    • /
    • pp.78-84
    • /
    • 2016
  • N-Phenylthiourea derivatives and catechol oxidase receptor complex was studied using molecular mechanics method. The starting structure was adopted from the protein databank and the calculation of energy minimization and molecular dynamics was performed with AMBER package. The molecular dynamics showed that the simulation time span of 20 ns was long enough to observe the interaction profile and stationary ligand-receptor configuration in the complex. The conformation of the ligand was related to the interaction to the receptor and the efficacy was also interpreted in this context.

Catechol-Chitosan Hydrogel: Scale-up Synthesis and Self-Healing Properties (카테콜-키토산 하이드로겔의 대용량 합성과 자가 치유 특성 분석)

  • Choi, Hoe Young;Ko, Haye Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.251-252
    • /
    • 2022
  • Chemical crosslinking is the most widely used method for hydrogel preparations. We prepared a hydrogel using chitosan catechol/polyvinyl alcohol and sodium tetraborate decahydrate (Na2B4O7·10H2O). The formation of hydrogels often presents inconsistent results and issues according to the reaction scale. Therefore, we measured and analyzed the self-healing property and viscoelasticity of hydrogels attributed to scale-up synthesis using a rheometer.

  • PDF

Purification and Some Properties of Polyphenol Oxidase from Arrowroot (칡 뿌리의 Polyphenol Oxidase의 정제 및 성질에 관한 연구)

  • Oh, Man-Jin;Lee, Won-Yong;Lee, Ka-Soon
    • Applied Biological Chemistry
    • /
    • v.31 no.4
    • /
    • pp.331-338
    • /
    • 1988
  • Acetone powder was prepared from raw arrowroots and the polyphenol oxidases of crude enzyme prepared from acetone powder were identified 5 isoenzymes by staining with catechol containing 0.05% phenylene diamine. The crude enzyme was passed through the columns of ion exchangers and gel permeation to fractionate the polyphenol oxidases. The main fraction of polyphenol oxidase appeared to be purified by 94-fold, with the activity yield of 45.4%, and its molecular weight was determined as 38,500 by poly acrylamide gel electrophoresis. The optimal pH and temperature for the enzyme activity were pH 7.5 and $50^{\circ}C$, respectively. The purified enzyme showed a high affinity for catechol and pyrogallol. The Michaelis constant for catechol was calculated to be 16.67mM according to the Lineweaver-Burk method. The enzyme activity was strongly inhibited by L-ascorbic acid, sodium bisulfite, EDTA and KCN, and totally inhibited, by $Fe^{3+}$ at a concentration of 1mM. However the enzyme was activated by $Zn^{2+}$ approximately 1.7 times at the same concentration.

  • PDF

Characterization of Catechol l,2-Dioxygenase Purified from the Benzoate Degrading Bacterium, Pseudomonas sp. NFQ-l Isolated from Dead Coal Pit Areas (폐광지역에서 분리한 Benzoate 분해세균 Pseudomonas sp. NEQ-1에서 정제된 Catechol 1,2-Dioxygenase의 특성)

  • Joo Jung-Soo;Yoon Kyung-Ha
    • Korean Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.275-281
    • /
    • 2004
  • Our previous research has demonstrated that the bacterium, Pseudomonas sp. NFQ-l capable of utilizing quin­oline (2,3-benzopyridine) as the sole source of carbon, nitrogen, and energy was isolated and characterized [Yoon et ai. (2003) Kor. J. Biotechnol. Bioeng. 18(3):174-179]. In this study, we have found that Pseudomonas sp. NFQ-l could degrade quinoline as well as benzoate, and extended this work to characterize the catechol 1,2­dioxygenase (C1,2O) purified from the bacterium cultured in benzoate media. Initially, C1,2O has been purified by ammonium sulfate precipitation, gel permeation chromatography, and Source 15Q. After Source 15Q, puri­fication fold was increased to approximately 14.21 unit/mg. Molecular weight of C1,2O was about 33 kDa. Physicochemical characteristics (e.g., substrate specificity, Km, Vmax, pH, temperature and effect of inhibitors) of purified C1,2O were examined. C1,2O demonstrated the activity for catechol, 4-methylcatechol and 3-meth­ylcatechol as a substrate, respectively. The Km and Vmax value of C1,2O for catechol was 38.54 ${\mu}M$ and $25.10\;{\mu}mol{\cdot}min^{-1}{\cdot}mg^{-1}.$ The optimal temperature of C1,2O was $30^{\circ}C$ and the optimal pH was approximately 8.5. Metal ions such as $Ag^+,\;Hg^+,\;Ca^{2+},\;and\;Cu^{2+}$ show the inhibitory effect on the activity of C1,2O. N-terminal amino sequence of C1,2O was analyzed as ^1TVKISQSASIQKFFEEA^{17}.$ In this work, we found that the amino acid sequence of NFQ-l showed the sequence homology of 82, 71, 59 and $53\%$ compared with C1,2O from Pseudomonas aeruginosa PA0l, Pseudomonas arvilla C-1., P. putida KT2440 and Pseudomonas sp. CA10, respectively.

Streptomycetes Inducible Gene Cluster Involved in Aromatic Compound Metabolism

  • Park, Hyeon-Ju;Kim, Eung-Su
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.422-427
    • /
    • 2003
  • Streptomyces setonii (ATCC 39116) is a Gram-positive thermophilic soil actinomycetes capable of degrading single aromatic compounds including phenol and benzoate via ortho-cleavage pathway. we isolated approximately 6.3-kb S. setonii DNA fragment containing a thermophilic catechol 1,2-dioxygenase(C12O) gene. Here we further revealed that the 6.3-kb S. setonii DNA fragment was organized into two putative divergently-transcribed clusters with 6 complete and one incomplete open reading frames (ORFs). The first cluster with 3 ORFs showed significant homologies to previously known benA, benB, and benC, implying a part of benzoate catabolic operon. The second cluster revealed an ortho-cleavage catechol catabolic operon with three translationally-coupled ORFs (catR, catB, catA). Each of these individually-cloned ORFs was expressed in E. coli and identified as a distinct protein band with a theoretical molecular weight in SDS-PAGE. The expression of the cloned S. setonii catechol operon was induced in a heterologous S. lividans by specific single aromatic compounds including catechol, phenol, and 4-chlorophenol. The simitar induction pattern was also observed using a luciferase gene-fused reporter system, implying that S. setonii employs an inducer-specific regulatory mechanism for aromatic compound metabolism.

  • PDF

Isolation and Characterization of 3,4-Dichloroaniline Degrading Bacteria from a Sandbank (갯벌에서 분리한 3,4-Dichloroaniline 분해 미생물의 특성)

  • Kim, Young-Mog
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.275-281
    • /
    • 2006
  • The compound 3,4-dichloroaniline (DCA) is an aromatic amine used as an intermediate product in the synthesis of herbicides, azo-dyes and harmaceuticals. It is also a degradation product of some herbicides (diuron, propanil, and linuron) and of trichlorocarbanilide, a chemical used as active agent in the cosmetic industry. 3,4-DCA, however, is considered potential pollutants due to their toxic and recalcitrant properties to humans and other species. A bacterium capable of growth on 3,4-DCA was isolated by dilution method from 3,4-DCA-containing enrichment culture. Finally, a strain, YM-14, capable of degrading efficiently 3,4-DCA was isolated from a sandbank. The isolated strain, YM-14 was identified to be Arthrobacter sp.. Fifty ppm 3,4-DCA in 1/10 LB media was completely degraded by the growth of Arthrobacter sp. YM-14 for 12 h at $30^{\circ}C$. The isolated strain is capable of growth on 3,4-DCA as sole carbon source and also able to degrade other chloroaniline compounds. Also, the isolated strain showed high level of catechol 1,2-dioxygenase activity by 3,4-DCA exposure. The catechol 1,2-dioxygenase was supposed to be ones of the important factors for 3,4-DCA degradation.

  • PDF

A Newly Synthesized Flavone from Luteolin Escapes from COMT-Catalyzed Methylation and Inhibits Lipopolysaccharide-Induced Inflammation in RAW264.7 Macrophages via JNK, p38 and NF-κB Signaling Pathways

  • Ye, Lin;Xin, Yang;Wu, Zhi-yuan;Sun, Hai-jian;Huang, De-jian;Sun, Zhi-qin
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.15-26
    • /
    • 2022
  • Luteolin is a common dietary flavone possessing potent anti-inflammatory activities. However, when administrated in vivo, luteolin becomes methylated by catechol-O-methyltransferases (COMT) owing to the catechol ring in the chemical structure, which largely diminishes its anti-inflammatory effect. In this study, we made a modification on luteolin, named LUA, which was generated by the chemical reaction between luteolin and 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH). Without a catechol ring in the chemical structure, this new flavone could escape from the COMT-catalyzed methylation, thus affording the potential to exert its functions in the original form when administrated in the organism. Moreover, an LPS-stimulated RAW cell model was applied to detect the anti-inflammatory properties. LUA showed much more superior inhibitory effect on LPS-induced production of NO than diosmetin (a major methylated form of luteolin) and significantly suppressed upregulation of iNOS and COX-2 in macrophages. LUA treatment dramatically reduced LPS-stimulated reactive oxygen species (ROS) and mRNA levels of pro-inflammatory mediators such as IL-1β, IL-6, IL-8 and IFN-β. Furthermore, LUA significantly reduced the phosphorylation of JNK and p38 without affecting that of ERK. LUA also inhibited the activation of NF-κB through suppression of p65 phosphorylation and nuclear translocation.