Browse > Article
http://dx.doi.org/10.4014/jmb.2104.04027

A Newly Synthesized Flavone from Luteolin Escapes from COMT-Catalyzed Methylation and Inhibits Lipopolysaccharide-Induced Inflammation in RAW264.7 Macrophages via JNK, p38 and NF-κB Signaling Pathways  

Ye, Lin (School of Pharmacy, Changzhou University)
Xin, Yang (Food Science and Technology Program, Department of Chemistry, Faculty of Science, National University of Singapore)
Wu, Zhi-yuan (Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore)
Sun, Hai-jian (Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore)
Huang, De-jian (Food Science and Technology Program, Department of Chemistry, Faculty of Science, National University of Singapore)
Sun, Zhi-qin (Changzhou Second People's Hospital)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.1, 2022 , pp. 15-26 More about this Journal
Abstract
Luteolin is a common dietary flavone possessing potent anti-inflammatory activities. However, when administrated in vivo, luteolin becomes methylated by catechol-O-methyltransferases (COMT) owing to the catechol ring in the chemical structure, which largely diminishes its anti-inflammatory effect. In this study, we made a modification on luteolin, named LUA, which was generated by the chemical reaction between luteolin and 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH). Without a catechol ring in the chemical structure, this new flavone could escape from the COMT-catalyzed methylation, thus affording the potential to exert its functions in the original form when administrated in the organism. Moreover, an LPS-stimulated RAW cell model was applied to detect the anti-inflammatory properties. LUA showed much more superior inhibitory effect on LPS-induced production of NO than diosmetin (a major methylated form of luteolin) and significantly suppressed upregulation of iNOS and COX-2 in macrophages. LUA treatment dramatically reduced LPS-stimulated reactive oxygen species (ROS) and mRNA levels of pro-inflammatory mediators such as IL-1β, IL-6, IL-8 and IFN-β. Furthermore, LUA significantly reduced the phosphorylation of JNK and p38 without affecting that of ERK. LUA also inhibited the activation of NF-κB through suppression of p65 phosphorylation and nuclear translocation.
Keywords
Luteolin; 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH); catechol-O-methyltransferases (COMT); inflammation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bhat NR, Zhang P, Lee JC, Hogan EL. 1998. Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J. Neurosci. 18: 1633-1641.   DOI
2 Hambleton J, Weinstein SL, Lem L, DeFranco AL. 1996. Activation of c-Jun N-terminal kinase in bacterial lipopolysaccharide-stimulated macrophages. Proc. Nat. Acad. Sci. USA 93: 2774-2778.   DOI
3 Hommes DW, Peppelenbosch MP, van Deventer SJ. 2003. Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets. Gut 52: 144-151.   DOI
4 Chen D, Bi A, Dong X, Jiang Y, Rui B, Liu J, et al. 2014. Luteolin exhibits anti-inflammatory effects by blocking the activity of heat shock protein 90 in macrophages. Biochem. Biophys. Res. Commun. 443: 326-332.   DOI
5 Milanovic M, Kracht M, Schmitz ML. 2014. The cytokine-induced conformational switch of nuclear factor kappaB p65 is mediated by p65 phosphorylation. Biochem. J. 457: 401-413.   DOI
6 Perkins ND. 2007. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nature reviews. Mol. Cell Biol. 8: 49-62.
7 Gloire G, Legrand-Poels S, Piette J. 2006. NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem. Pharmacol. 72: 1493-1505.   DOI
8 Xia MZ, Liang YL, Wang H, Chen X, Huang YY, Zhang ZH, et al. 2012. Melatonin modulates TLR4-mediated inflammatory genes through MyD88- and TRIF-dependent signaling pathways in lipopolysaccharide-stimulated RAW264.7 cells. J. Pineal Res. 53: 325-334.   DOI
9 Assal F, Spahr L, Hadengue A, Rubbia-Brandt L, Burkhard PR. 1998. Tolcapone and fulminant hepatitis. Lancet 352: 958.
10 Keller JN, Hanni KB, Gabbita SP, Friebe V, Mattson MP, Kindy MS. 1999. Oxidized lipoproteins increase reactive oxygen species formation in microglia and astrocyte cell lines. Brain Res. 830: 10-15.   DOI
11 Kopin IJ. 1985. Catecholamine metabolism: basic aspects and clinical significance. Pharmacol. Rev. 37: 333-364.
12 Aziz N, Kim MY, Cho JY. 2018. Anti-inflammatory effects of luteolin: a review of in vitro, in vivo, and in silico studies. J. Ethnopharmacol. 225: 342-358.   DOI
13 Lin Y, Shi R, Wang X, Shen HM. 2008. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr. Cancer Drug Targets 8: 634-646.   DOI
14 Liu CW, Lin HW, Yang DJ, Chen SY, Tseng JK, Chang TJ, et al. 2016. Luteolin inhibits viral-induced inflammatory response in RAW264.7 cells via suppression of STAT1/3 dependent NF-kappaB and activation of HO-1. Free Radic. Biol. Med. 95: 180-189.   DOI
15 Pratheeshkumar P, Son YO, Divya SP, Roy RV, Hitron JA, Wang L, et al. 2014. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways. Toxicol. Appl. Pharmacol. 281: 230-241.   DOI
16 Kanazawa K, Uehara M, Yanagitani H, Hashimoto T. 2006. Bioavailable flavonoids to suppress the formation of 8-OHdG in HepG2 cells. Arch. Biochem. Biophys. 455: 197-203.   DOI
17 Zuvela P, David J, Yang X, Huang D, Wong MW. 2019. Non-Linear quantitative structure(-) activity relationships modelling, mechanistic study and in-silico design of flavonoids as potent antioxidants. Int. J. Mol. Sci. 20: 2328.   DOI
18 Manthey JA, Grohmann K, Guthrie N. 2001. Biological properties of citrus flavonoids pertaining to cancer and inflammation. Curr. Med. Chem. 8: 135-153.   DOI
19 Karin M, Ben-Neriah Y. 2000. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Ann. Rev. Immunol. 18: 621-663.   DOI
20 Chen ZJ, Dai YQ, Kong SS, Song FF, Li LP, Ye JF, et al. 2013. Luteolin is a rare substrate of human catechol-O-methyltransferase favoring a para-methylation. Mol. Nutr. Food Res. 57: 877-885.   DOI
21 Wolfle U, Esser PR, Simon-Haarhaus B, Martin SF, Lademann J, Schempp CM. 2011. UVB-induced DNA damage, generation of reactive oxygen species, and inflammation are effectively attenuated by the flavonoid luteolin in vitro and in vivo. Free Radic. Biol. Med. 50: 1081-1093.   DOI
22 Kwon EY, Jung UJ, Park T, Yun JW, Choi MS. 2015. Luteolin attenuates hepatic steatosis and insulin resistance through the interplay between the liver and adipose tissue in mice with diet-induced obesity. Diabetes 64: 1658-1669.   DOI
23 Seelinger G, Merfort I, Schempp CM. 2008. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Med. 74: 1667-1677.   DOI
24 Hu C, Kitts DD. 2004. Luteolin and luteolin-7-O-glucoside from dandelion flower suppress iNOS and COX-2 in RAW264.7 cells. Mol. Cell. Biochem. 265: 107-113.   DOI
25 Wu W, Li D, Zong Y, Zhu H, Pan D, Xu T, et al. 2013. Luteolin inhibits inflammatory responses via p38/MK2/TTP-mediated mRNA stability. Molecules 18: 8083-8094.   DOI
26 Fei J, Liang B, Jiang C, Ni H, Wang L. 2019. Luteolin inhibits IL-1beta-induced in fl ammation in rat chondrocytes and attenuates osteoarthritis progression in a rat model. Biomed. Pharmacother. 109: 1586-1592.   DOI
27 Chen Z, Tu M, Sun S, Kong S, Wang Y, Ye J, et al. 2012. The exposure of luteolin is much lower than that of apigenin in oral administration of Flos Chrysanthemi extract to rats. Drug Metab. Pharmacokinet. 27: 162-168.   DOI
28 Lam P, Cheung F, Tan HY, Wang N, Yuen MF, Feng Y. 2016. Hepatoprotective effects of chinese medicinal herbs: a focus on anti-inflammatory and anti-oxidative activities. Int. J. Mol. Sci. 17: 465.   DOI
29 Eisenhofer G, Kopin IJ, Goldstein DS. 2004. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol. Rev. 56: 331-349.   DOI
30 Edenharder R, Grunhage D. 2003. Free radical scavenging abilities of flavonoids as mechanism of protection against mutagenicity induced by tert-butyl hydroperoxide or cumene hydroperoxide in Salmonella typhimurium TA102. Mutat. Res. 540: 1-18.   DOI
31 Sung J, Lee J. 2015. Anti-inflammatory activity of Butein and Luteolin through suppression of NFkappaB activation and induction of heme oxygenase-1. J. Med. Food 18: 557-564.   DOI
32 Meloto CB, Segall SK, Smith S, Parisien M, Shabalina SA, Rizzatti-Barbosa CM, et al. 2015. COMT gene locus: new functional variants. Pain 156: 2072-2083.   DOI
33 Guldberg HC, Marsden CA. 1975. Catechol-O-methyl transferase: pharmacological aspects and physiological role. Pharmacol. Rev. 27: 135-206.
34 Nissinen E, Tuominen R, Perhoniemi V, Kaakkola S. 1988. Catechol-O-methyltransferase activity in human and rat small intestine. Life Sci. 42: 2609-2614.   DOI
35 Mannisto PT, Kaakkola S. 1999. Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol. Rev. 51: 593-628.
36 Ha SK, Lee JA, Cho EJ, Choi I. 2017. Effects of Catechol O-Methyl Transferase inhibition on anti-inflammatory activity of luteolin metabolites. J. Food Sci. 82: 545-552.   DOI
37 Olanow CW. 2000. Tolcapone and hepatotoxic effects. Tasmar advisory panel. Arch. Neurol. 57: 263-267.   DOI
38 Shan J, Fu J, Zhao Z, Kong X, Huang H, Luo L, et al. 2009. Chlorogenic acid inhibits lipopolysaccharide-induced cyclooxygenase-2 expression in RAW264.7 cells through suppressing NF-kappaB and JNK/AP-1 activation. Int. Immunopharmacol. 9: 1042-1048.   DOI
39 Qian Z, Wu Z, Huang L, Qiu H, Wang L, Li L, et al. 2015. Mulberry fruit prevents LPS-induced NF-kappaB/pERK/MAPK signals in macrophages and suppresses acute colitis and colorectal tumorigenesis in mice. Sci. Rep. 5: 17348.   DOI
40 Parashos SA, Wielinski CL, Kern JA. 2004. Frequency, reasons, and risk factors of entacapone discontinuation in Parkinson disease. Clin. Neuropharmacol. 27: 119-123.   DOI
41 DeLeo FR, Renee J, McCormick S, Nakamura M, Apicella M, Weiss JP, et al. 1998. Neutrophils exposed to bacterial lipopolysaccharide upregulate NADPH oxidase assembly. J. Clin. Invest. 101: 455-463.   DOI
42 Kaminska B. 2005. MAPK signalling pathways as molecular targets for anti-inflammatory therapy--from molecular mechanisms to therapeutic benefits. Biochim. Biophys. Acta. 1754: 253-262.   DOI
43 Kim YS, Ahn CB, Je JY. 2016. Anti-inflammatory action of high molecular weight Mytilus edulis hydrolysates fraction in LPS-induced RAW264.7 macrophage via NF-kappaB and MAPK pathways. Food Chem. 202: 9-14.   DOI
44 Ajizian SJ, English BK, Meals EA. 1999. Specific inhibitors of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways block inducible nitric oxide synthase and tumor necrosis factor accumulation in murine macrophages stimulated with lipopolysaccharide and interferon-gamma. J. Infect. Dis. 179: 939-944.   DOI
45 Cao Y, Chen ZJ, Jiang HD, Chen JZ. 2014. Computational studies of the regioselectivities of COMT-catalyzed meta-/para-O methylations of luteolin and quercetin. J. Phys. Chem. B. 118: 470-481.   DOI
46 Dooley MM, Sano N, Kawashima H, Nakamura T. 1990. Effects of 2,2'-azobis (2-amidinopropane) hydrochloride in vivo and protection by vitamin E. Free Radic. Biol. Med. 9: 199-204.   DOI
47 Muraoka S, Miura T. 2002. Protection by estrogens of biological damage by 2,2'-azobis(2-amidinopropane) dihydrochloride. J. Steroid Biochem. Mol. Biol. 82: 343-348.   DOI
48 Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Prior RL. 2002. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 50: 4437-4444.   DOI
49 Wang L, Chen Q, Zhu L, Li Q, Zeng X, Lu L, et al. 2017. Metabolic Disposition of Luteolin is mediated by the interplay of UDP-Glucuronosyltransferases and Catechol-O-Methyltransferases in rats. Drug Metab. Dispos. 45: 306-315.   DOI
50 Qian LB, Wang HP, Chen Y, Chen FX, Ma YY, Bruce IC, et al. 2010. Luteolin reduces high glucose-mediated impairment of endothelium-dependent relaxation in rat aorta by reducing oxidative stress. Pharmacol. Res. 61: 281-287.   DOI
51 Kumar KJ, Yang HL, Tsai YC, Hung PC, Chang SH, Lo HW, et al. 2013. Lucidone protects human skin keratinocytes against free radical-induced oxidative damage and inflammation through the up-regulation of HO-1/Nrf2 antioxidant genes and downregulation of NF-kappaB signaling pathway. Food Chem. Toxicol. 59: 55-66.   DOI
52 Kundu JK, Surh YJ. 2008. Inflammation: gearing the journey to cancer. Mutat. Res. 659: 15-30.   DOI
53 Yeom M, Kim JH, Min JH, Hwang MK, Jung HS, Sohn Y. 2015. Xanthii fructus inhibits inflammatory responses in LPS-stimulated RAW 264.7 macrophages through suppressing NF-kappaB and JNK/p38 MAPK. J. Ethnopharmacol. 176: 394-401.   DOI
54 Erwig LP, Rees AJ. 1999. Macrophage activation and programming and its role for macrophage function in glomerular inflammation. Kidney Blood Press. Res. 22: 21-25.   DOI
55 Zeinali M, Rezaee SA, Hosseinzadeh H. 2017. An overview on immunoregulatory and anti-inflammatory properties of chrysin and flavonoids substances. Biomed. Pharmacother. 92: 998-1009.   DOI
56 Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA. 1999. Phylogenetic perspectives in innate immunity. Science 284: 1313-1318.   DOI
57 King GL. 2008. The role of inflammatory cytokines in diabetes and its complications. J. Periodontol. 79: 1527-1534.   DOI
58 Manzi S, Wasko MC. 2000. Inflammation-mediated rheumatic diseases and atherosclerosis. Ann. Rheum. Dis. 59: 321-325.   DOI
59 Manach C, Scalbert A, Morand C, Remesy C, Jimenez L. 2004. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 79: 727-747.   DOI
60 Feng X, Qin H, Shi Q, Zhang Y, Zhou F, Wu H, et al. 2014. Chrysin attenuates inflammation by regulating M1/M2 status via activating PPARgamma. Biochem. Pharmacol. 89: 503-514.   DOI
61 Jennings A, Welch AA, Spector T, Macgregor A, Cassidy A. 2014. Intakes of anthocyanins and flavones are associated with biomarkers of insulin resistance and inflammation in women. J. Nutr. 144: 202-208.   DOI
62 Park CM, Park JY, Noh KH, Shin JH, Song YS. 2011. Taraxacum officinale Weber extracts inhibit LPS-induced oxidative stress and nitric oxide production via the NF-kappaB modulation in RAW 264.7 cells. J. Ethnopharmacol. 133: 834-842.   DOI
63 Balkwill F, Mantovani A. 2001. Inflammation and cancer: Back to Virchow? Lancet 357: 539-545.   DOI
64 Schultz E. 1991. Catechol-O-methyltransferase and aromatic L-amino acid decarboxylase activities in human gastrointestinal tissues. Life Sci. 49: 721-725.   DOI
65 Chen Z, Chen M, Pan H, Sun S, Li L, Zeng S, et al. 2011. Role of catechol-O-methyltransferase in the disposition of luteolin in rats. Drug Metab. Dispos. 39: 667-674.   DOI
66 Lee JO, Jeong D, Kim MY, Cho JY. 2015. ATP-binding pocket-targeted suppression of Src and Syk by luteolin contributes to its anti-inflammatory action. Mediators Inflamm. 2015: 967053.
67 Park CM, Jin KS, Lee YW, Song YS. 2011. Luteolin and chicoric acid synergistically inhibited inflammatory responses via inactivation of PI3K-Akt pathway and impairment of NF-kappaB translocation in LPS stimulated RAW 264.7 cells. Eur. J. Pharmacol. 660: 454-459.   DOI
68 Biswas SK. 2016. Does the Interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid. Med. Cell. Longev. 2016: 5698931.   DOI
69 Gao B, Tsukamoto H. 2016. Inflammation in alcoholic and nonalcoholic fatty liver disease: friend or foe? Gastroenterology 150: 1704-1709.   DOI
70 Ambade A, Mandrekar P. 2012. Oxidative stress and inflammation: essential partners in alcoholic liver disease. Int. J. Hepatol. 2012: 853175.   DOI
71 Robak J, Shridi F, Wolbis M, Krolikowska M. 1988. Screening of the influence of flavonoids on lipoxygenase and cyclooxygenase activity, as well as on nonenzymic lipid oxidation. Pol. J. Pharmacol. Pharm. 40: 451-458.
72 Park CM, Song YS. 2013. Luteolin and luteolin-7-O-glucoside inhibit lipopolysaccharide-induced inflammatory responses through modulation of NF-kappaB/AP-1/PI3K-Akt signaling cascades in RAW 264.7 cells. Nutr. Res. Pract. 7: 423-429.   DOI
73 Ruiz PA, Haller D. 2006. Functional diversity of flavonoids in the inhibition of the proinflammatory NF-kappaB, IRF, and Akt signaling pathways in murine intestinal epithelial cells. J. Nutr. 136: 664-671.   DOI
74 Brown JE, Rice-Evans CA. 1998. Luteolin-rich artichoke extract protects low density lipoprotein from oxidation in vitro. Free Rradic. Res. 29: 247-255.   DOI
75 Zhang T, Wu W, Li D, Xu T, Zhu H, Pan D, et al. 2014. Anti-oxidant and anti-apoptotic effects of luteolin on mice peritoneal macrophages stimulated by angiotensin II. Int. Immunopharmacol. 20: 346-351.   DOI
76 Xu Q, Liu M, Liu Q, Wang W, Du Y, Yin H. 2017. The inhibition of LPS-induced inflammation in RAW264.7 macrophages via the PI3K/Akt pathway by highly N-acetylated chitooligosaccharide. Carbohydr. Polym. 174: 1138-1143.   DOI
77 Lee JA, Song HY, Ju SM, Lee SJ, Kwon HJ, Eum WS, et al. 2009. Differential regulation of inducible nitric oxide synthase and cyclooxygenase-2 expression by superoxide dismutase in lipopolysaccharide stimulated RAW 264.7 cells. Exp. Mol. Med. 41: 629-637.   DOI
78 Liu F, Zhang X, Ling P, Liao J, Zhao M, Mei L, et al. 2017. Immunomodulatory effects of xanthan gum in LPS-stimulated RAW 264.7 macrophages. Carbohydr. Polym. 169: 65-74.   DOI