• Title/Summary/Keyword: catalytic reduction

Search Result 767, Processing Time 0.021 seconds

The Catalytic Reduction of Carbon Dioxide by Butane over Nickel loaded Catalysts (니켈담지촉매상에서 부탄에 의한 이산화탄소의 환원반응)

  • Yoon, Cho-Hee;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.543-549
    • /
    • 1997
  • The direct reaction of carbon dioxide($CO_2$) with butane($C_4H_{10}$) to obtain synthesis gas and hydrocarbon compounds have been studied on nickel loaded catalysts. In the reaction of $CO_2$ with $C_4H_{10}$, Ni loaded catalysts showed similar activity with Pt catalyst and Coke deposition on the catalyst was severe by dehydrogenation of butane. The main products were carbon monoxide and hydrogen, when alumina and Y type zeolite were used as a support. Instead, a great deal of aromatic hydrocarbons were obtained on the Ni loaded ZSM-5 catalyst. The conversion of $CO_2$ increased with the increasing molar ratio of $CO_2$/$C_4H_{10}$ on Ni/ZSM-5, Ni/NaY and Ni/alumina catalyst, but the conversion decreased again from the ratio of 2. The value of $CO_2$ conversion was the highest at the 5wt% of Ni loading on ZSM-5 catalyst. A part of cokes deposited on the catalysts diminished when only $CO_2$ gas or water steam flowed into the reactor. The coke deposited on the catalysts was very reactive and it may be an important intermediate for the carbon dioxide reforming reaction.

  • PDF

Various Technologies for Simultaneous Removal of NOx and SO2 from Flue Gas (배출가스의 질소산화물과 이산화황 동시 저감 기술)

  • Park, Hyun-Woo;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.607-618
    • /
    • 2017
  • Harmful air pollutants are exhausted from the various industrial facilities including the coal-fired thermal power plants and these substances affects on the human health as well as the nature environment. In particular, nitrogen oxides ($NO_x$) and sulfur dioxide ($SO_2$) are known to be causative substances to form fine particles ($PM_{2.5}$), which are also deleterious to human health. The integrated system composed of selective catalytic reduction (SCR) and wet flue gas desulfurization (WFGD) have been widely applied in order to control $NO_x$ and $SO_2$ emissions, resulting in high investment and operational costs, maintenance problems, and technical limitations. Recently, new technologies for the simultaneous removal of $NO_x$ and $SO_2$ from the flue gas, such as absorption, advanced oxidation processes (AOPs), non-thermal plasma (NTP), and electron beam (EB), are investigated in order to replace current integrated systems. The proposed technologies are based on the oxidation of $NO_x$ and $SO_2$ to $HNO_3$ and $H_2SO_4$ by using strong aqueous oxidants or oxidative radicals, the absorption of $HNO_3$ and $H_2SO_4$ into water at the gas-liquid interface, and the neutralization with additive reagents. In this paper, we summarize the technical improvements of each simultaneous abatement processes and the future prospect of technologies for demonstrating large-scaled applications.

Fabrication and characterization of ZrxCe1-xO2 catalytic powder by a hydrothermal process (수열합성공정에 의한 ZrxCe1-xO2 촉매 분말의 제조 및 특성)

  • Choi, Yeon-Bin;Son, Jeong-hun;Sohn, Jeong Ho;Bae, Dong-Sik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.309-312
    • /
    • 2017
  • The ceria powder is excellent in oxygen storage capacity (OSC) through the oxidation and reduction reaction of Ce ions and is used as a typical material for a three-way catalyst of an automobile which purifies the exhaust gas. However, since ceria generally has poor thermal stability at high temperatures, it is doped with metal ions to improve thermal stability. Therefore, in this study, Zr ions were doped into ceria powder, and their characteristics were further improved due to the increase of specific surface area with decreasing particle size due to doping. In this study, the synthesis of zirconium doped ceria nanopowder was synthesized by hydrothermal process. In order to synthesis Zr ion doped ceria nanopowder, the precursor reaction at was $200^{\circ}C$ for 6 hours. The average particle size of synthesized Zr doped $CeO_2$ nanopowder was below 20 nm. The specific surface area of synthesized Zr ion doped ceria nanopowder increased from $52.03m^2/g$ to $132.27m^2/g$ with Zr increased 30 %.

Internal Flow Analysis of Urea-SCR System for Passenger Cars Considering Actual Driving Conditions (운전 조건을 고려한 승용차용 요소첨가 선택적 촉매환원장치의 내부 유동 해석에 관한 연구)

  • Moon, Seong Joon;Jo, Nak Won;Oh, Se Doo;Lee, Ho Kil;Park, Kyoung Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.127-138
    • /
    • 2016
  • Diesel vehicles should be equipped with urea-selective catalytic reduction(SCR) system as a high-performance catalyst, in order to reduce harmful nitrogen oxide emissions. In this study, a three-dimensional Eulerian-Lagrangian CFD analysis was used to numerically predict the multiphase flow characteristics of the urea-SCR system, coupled with the chemical reactions of the system's transport phenomena. Then, the numerical spray structure was modified by comparing the results with the measured values from spray visualization, such as the injection velocity, penentration length, spray radius, and sauter mean diameter. In addition, the analysis results were verified by comparison with the removal efficiency of the nitrogen oxide emissions during engine and chassis tests, resulting in accuracy of the relative error of less than 5%. Finally, a verified CFD analysis was used to calculate the interanl flow of the urea-SCR system, thereby analyzing the characteristics of pressure drop and velocity increase, and predicting the uniformity index and overdistribution positions of ammonia.

Characteristics of Cyanide Decomposition by Hydrogen Peroxide Reduction (과산화수소에 의한 시안의 분해특성)

  • 이진영;윤호성;김철주;김성돈;김준수
    • Resources Recycling
    • /
    • v.11 no.2
    • /
    • pp.3-13
    • /
    • 2002
  • The characteristics of cyanide decomposition in aqueous phase by hydrogen peroxide have been explored in an effort to develop a process to recycle waste water. The self-decomposition of $H_2O$$_2$at pH 10 or below was minimal even in 90 min., with keeping about 90% of $H_2O$$_2$undissociated. On the contrary, at pH 12 only 9% of it remained during the same time. In the presence of copper catalyst at 5 g Cu/L, complete decomposition of $H_2$O$_2$was accomplished at pH 12 even in a shorter time of 40 min. The volatility of free cyanide was decisively dependent on the solution pH: the majority of free cyanide was volatilized at pH 8 or below, however, only 10% of it was volatilized at pH 10 or above. In non-catalytic cyanide decomposition, the free cyanide removal was incomplete in 300 min. even in an excessive addition of $H_2$$O_2$at a $H_2$$O_2$/CN molar ratio of 4, with leaving behind about 8% of free cyanide. On the other hand, in the presence of copper catalyst at a Cu/CN molar ratio of 0.2, the free cyanide was mostly decomposed in only 16 min. at a reducedH202/CN molar ratio of 2. Ihe efnciency of HBO2 in cyanide decomposition decreased with increasing addition of H2O2 since the seu-decomposition rate of $H_2$$O_2$increased. At the optimum $H_2$$O_2$/mo1ar ratio 0.2 of and Cu/CN molar ratio of 0.05, the free cyanide could be completely decomposed in 70 min., having a self-decomposition rate of 22 mM/min and a H$_2$$O_2$ efficiency of 57%.

Effect of Vanadium Oxide Loading on SCR Activity and $SO_2$ Resistance over $TiO_2$-Supported $V_2O_5/TiO_2$ Commercial De-NOx Catalysts (상용 $V_2O_5/TiO_2$ 촉매의 바나듐 함량이 SCR 반응성과 $SO_2$ 내구성에 미치는 영향)

  • Park, Kwang Hee;Cha, Wang Seog
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.485-489
    • /
    • 2012
  • We investigated vanadium (V) loading effects on selective catalytic reduction (SCR) activity and $SO_2$ resistance using commercial SCR catalysts applied on a power plant and incinerator with different amounts of V loading. These catalysts were characterized using XRD, Raman, ICP, BET analysis and found to contain $TiO_2$ (anatase) supported $V_2O_5$ added $WO_3$ and $SiO_2$. The SCR activity of the catalysts increased by increasing either the $V_2O_5$ or the $WO_3$ loading amounts; the SCR activity of the catalysts added $WO_3$ is higher than that of $WO_3$-free catalysts. As the V loading amount in the catalyst increased, the $SO_2$ durability decreased. The $V_2O_5$ supported $TiO_2$ catalyst added $WO_3$ and $SiO_2$ inhibits the deactivation process by $SO_2$. The $SO_2$ resistance of catalysts added $SiO_2$ is higher than that of catalysts added $WO_3$.

Phase Cooperation Between Mo-V-O and Metal Oxide in Selective Oxidation of Acrolein (아크롤레인 선택 산화반응에서 Mo-V-O와 금속산화물의 상간협동)

  • Park, D.W.;Na, S.E.;Kim, K.H.;Lee, W.H.;Chung, J.S.
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.327-336
    • /
    • 1994
  • The synergistic effects in mechanical mixture catalysts of Mo-V-O and metal oxide were investigated for the selective oxidation of acrolein. The metal oxides used are $SnO_2$, ${\alpha}-Sb_2O_4$, $WO_3$, ${\alpha}-Al_2O_3$, CuO, $MnO_2$, $Cu_2O$, MgO, CoO, and ZnO. Mechanical mixtures of Mo-V-O plus $SnO_2$ or ${\alpha}-Sb_2O_4$ had resulted in higher conversion of acrolein and higher yield of acrylic acid than Mo-V-O. The origin of the synergy is attributed to the cooperation of Mo-V-O and $SnO_2$ or ${\alpha}-Sb_2O_4$, in which $SnO_2$ or ${\alpha}-Sb_2O_4$ forms dissociated oxygens at their oxygen vacancies and transports them to Mo-V-O. $Cu_2O$, MgO, CuO, and $MnO_2$, increased conversion of acrolein but decreased yield of acrylic acid. CoO and ZnO inhibited the catalytic performance of Mo-V-O. The different role of these metal oxides is explained in terms of their oxidation-reduction properties.

  • PDF

Optimization of Mannitol Fermentation by Leuconostoc mesenteroides sp. strain JFY (Leuconostoc mesenteroides sp. strain JFY 균주에 의한 만니톨 발효 조건의 최적화)

  • Yoo Sun Kyun;Hur Sang Sun;Song Suckhwan;Kim Kyung Min;Whang Kyung Sook
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.374-381
    • /
    • 2005
  • The production of functional foods providing health benefit is one of the fast growing fields in the food industry. Mannitol as GRAS (generally recognized as safe) is a functional food. Mannitol is about $70\%$ as sweet as sucrose and slowly and incompletely absorbed from the intestine, suppling only about one-half energy value of glucose. Commercially, the mannitol is synthesized by catalytic or electrochemical reduction of glucose. However, as strong demand for natural products increased, biological techniques have been developed for mannitol production. The object of this study was to determine the optimum conditions of mannitol fermentation by Leuconostoc mesenteroides sp. strain JFY isolated from fermented vegetables. The processes parameters such as pH, temperature, yeast extract concentration, and fructose concentration were optimized. The chosen ranges were 4.5 to 7.5 for pH, 22 to $34^{\circ}C$ for temperature, 0.05 to $2.0\%$ for yeast extract. and 5 to 350 g/L for fructose. The mineral medium used consisted of 3.0g $KH_2PO_4,\;0.01g\;FeSO_4{\cdot}H_2O,\;0.01g\;MnSO_4{\cdot}4H_2O,\;0.2g\; MgSO_4{\cdot}7H_2O,\;0.01g\;NaCl,\;and\;0.05g\;CaCl_2$ per 1 liter of deionized water. The optimum values of pH, temperature, yeast extract, and fructose concentration were obtained at about pH 6.5, temperature $28^{\circ}C$, yeast extract $0.5\%$ and fructose 30g/L. At optimum condition, the production of mannitol amounted to 31.6g/l. We hope that these findings are of particular importance for industrial application of mannitol production.

Synthesis of Chromium Nitride and Evaluation of its Catalytic Property (크롬 질화물(CrN)의 합성 및 촉매특성에 관한 연구)

  • Lee, Yong-Jin;Kwon, Heock-Hoi
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.451-457
    • /
    • 2006
  • We synthesized phase pure CrN having surface areas up to $47m^2/g$ starting from $CrCl_{3}$ with $NH_{3}$. Thermal Gravimetric Analysis coupled with X-ray diffraction was carried out to identify solid state transition temperatures and the phase after each transition. In addition, the BET surface areas, pore size distributions, and crystalline diameters for the synthesized materials were analyzed. Space velocity influenced a little to the surface areas of the prepared materials, while heating rate did not. We believe it is due to the fast removal of reaction by-products from the system. Temperature programmed reduction results revealed that the CrN was hardly passivated by 1% $O_{2}$. Molecular nitrogen was detected from CrN at 700 and $950^{\circ}C$, which may be from lattice nitrogen. In temperature programmed oxidation with heating rate of 10 K/min in flowing air, oxidation started at or higher than $300^{\circ}C$ and resulting $Cr_{2}O_{3}$ phase was observed with XRD at around $800^{\circ}C$. However the oxidation was not completed even at $900^{\circ}C$. CrN catalysts were highly active for n-butane dehydrogenation reaction. Their activity is even higher than that of a commercial $Pt-Sn/Al_{2}O_{3}$ dehydrogenation catalyst in terms of volumetric reaction rate. However, CrN was not active in pyridine hydrodenitrogenation.

Effects of Gami-Handayeolso-Tang on Body Fat Reduction in High Fat Diet-Fed Obese Mice (가미한다열소탕(加味寒多熱少湯)이 고지방식이 비만생쥐의 체지방감소에 미치는 영향)

  • Lee, Ha-Il;Lee, Jong-Ha;Kwon, Young-Mi;Song, Yung-Sun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.26 no.1
    • /
    • pp.13-31
    • /
    • 2016
  • Objectives In this study, it was investigated whether Gami-Handayeolso-Tang (HDYST) medication has anti-obesity effects in high fat diet (HFD)-fed obese mice. Methods The experimental animals were divided into five groups-normal diet-fed (ND), high fat diet-fed control (HFD), HFD+HDYST 150, HFD+HDYST 300, and HFD+orlistat as a positive drug. The obese markers such as body weight, diet efficiency ratio, serum levels of total cholesterol, triglyceride, lipid contents, leptin, adiponectin, and GOT/GPT were measured. Also, white adipose tissue, liver weight, abdominal fat mass, hepatic lipid contents, and mRNA expression of obese-associating genes were examined in obese mice. Results In high fat diet-fed mice, HDYST administration significantly decreased body weight, diet efficiency ratio, serum levels of total cholesterol, triglyceride, LDL-cholesterol, as well as leptin and GOT/GPT, compared to the HFD group in a dose-dependent manner. HDYST increased significantly the serum levels of HDL-cholesterol and adiponectin. It also reduced the accumulation of lipids, such as total lipid and triglycerides, in organs such as liver and abdominal adipose tissue. Moreover, HDYST administration significantly decreased the expression levels of fatty acid synthetic genes, such as sterol regulatory element-binding protein-1c (SREBP-1c), FAS and Stearoyl-Coenzyme A desaturase 1 (SCD-1), in the liver tissues, while it increased the messenger RAN (mRNA) levels of fatty acid catalytic genes, such as Peroxisome proliferator activated receptor alpha (PPAR-${\alpha}$), acyl-COA oxidase (ACO), and Carnitine palmitoyltransferase-1a (CPT-1a). Conclusions Based on the results above, HDYST reveals anti-obesity effects declining body fat accumulation through the regulation of fatty acid metabolism and leptin/adiponectin serum levels. It therefore suggests that HDYST can be clinically useful for the treatment of obesity.