• Title/Summary/Keyword: catalytic reduction

Search Result 767, Processing Time 0.029 seconds

SI Engine Hydrocarbon Emissions Reduction with Secondary Air Injection and Coolant Control (2차 공기분사 및 냉각수제어에 의한 SI 엔진의 탄화수소 배기저감)

  • 박기수;조영진;박심수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.51-58
    • /
    • 2000
  • It is well known that the majority of the emissions measured from vehicle exhaust in the US Federal Test Procedure(FTP-75) are emitted during the first 60 seconds. This paper describes an experimental study on SI engine emissions reduction after cold start with interval secondary air injection and coolant control. Secondary air injection after cold start to reduce exhaust emissions causes an exothermic reaction at the exhaust port and gives sufficient air to the catalyst. For that reason engine-out emissions oxidized in the exhaust port and the rapid heating of a catalytic converter after cold start with CSAI and ISAI are estimated. The influence of the coolant temperature on SI engine emissions has been estimated. In the present studycoolant control of the cylinder head tempeature is used to investigate the effect of coolant temperature on SI engine emissions. The results show that engine-out hydrocarbon and carbon monoxide emissions are considerably reduced with interval secondary air injection and coolant control.

  • PDF

A STUDY ON FLOW MIXING IMPROVEMENT OF SELECTIVE CATALYTIC REDUCTION USING GASEOUS REDUCTANT (기상 환원제를 사용하는 선택적 환원촉매에서 유동혼합 개선에 관한 연구)

  • Ko, S.C.;Lee, B.H.;Cho, S.H.;Lee, S.H.;Hong, S.T.;Lee, D.Y.
    • Journal of computational fluids engineering
    • /
    • v.15 no.1
    • /
    • pp.56-63
    • /
    • 2010
  • Since emission regulations for vehicles have become more stringent, SCR technology has drawn a strong attention in order to reduce NOx emissions. Optimal design of a reductant injection nozzle and a multi-hole plate located between the cone and catalyst is critical in that the uniform distribution of reductant is necessary to maximize the NOx conversion efficiency and minimize the slip of reductant in SCR. In this work, an LPG fuel(C3H8 in vapor state) was used as a reductant for LPG vehicles. A Realizable k-$\varepsilon$ model is used for turbulence, and SCR body is defined as porous media with inertia and viscous resistances measured in this work. Effect of the number of nozzle holes on the flow mixing index was analyzed, which revealed that a four hole nozzle shows the best performance in terms of uniformity of flow. An installment of a multi-hole plate at the entrance of catalyst was evaluated with flow mixing index, uniformity of flow, and pressure drop. A multi-hole plate with gradual hole diameter change in three steps showed the best uniformity of flow within the conditions suggested in this work.

Corrosion Characteristics Improvement of Aluminium Tube for Diesel Engine Intercooler with LP-EGR(Low Pressure-Exhaust Gas Recirculation) (LP-EGR이 적용된 디젤 엔진 인터쿨러용 알루미늄 튜브의 내식성 향상)

  • Ahn, Joon;Ha, Seok;Kwak, Dong-Ho;Jung, Byung-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.140-145
    • /
    • 2012
  • Recently, various after-treatment systems, such as LP-EGR(Low Pressure-Exhaust Gas Recirculation), SCR(Selective Catalytic Reduction) and LNT(Lean NOx Trap), were developed to obey the stringent emission regulations of diesel engine. There are many researches on LP-EGR system because it has advantages of NOx reduction and low fuel consumption. But, condensation water is generated in internal of intercooler tube and it contains various types of anion that cause the corrosion of aluminium tube. In this study, it is examined that the condensation water effects on corrosion of aluminium tube. And method for improvement of corrosion characteristics is investigated using the dipping and electrochemical test.

NH3 Generation Characteristics of a LNT Catalyst Downstream (LNT 촉매 후단의 NH3 생성 특성)

  • Seo, Choong-Kil
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.18-23
    • /
    • 2016
  • As diesel engines have high power and good fuel economy on top of less $CO_2$ emissions, their market shares are increasing not only in commercial vehicles but also in passenger cars. LNT, urea-SCR and combination of them have been developed for after-treatment of the exhaust gas to reduce NOx on diesel vehicles. The aim of this study is to investigate the $NH_3$ generation characteristics of LNT catalyst downstream. It was found from the experiments of the LNT catalyst that $H_2$ was useful as a reductant in SCR catalyst because it can enhance the de-NOx performance and improve $NH_3$ selectivity. The $NH_3$ generation of the LNT, when hydrothermally aged at $900^{\circ}C$ for 18 hr, increased to about 90ppm at $300^{\circ}C$ due to Pt sintering and Ba agglomeration. LNT catalyst was most sulfur poisoning at $500^{\circ}C$. The $NH_3$ slip increased due to the reduction of residence time according to SV increase.

Removal of S $O_{2}$ and NO by Dry Sorbent(II) - Efficiency of Cu-Ce and Cu-7Al - (건식법에 의한 이산화황과 산화질소의 제거(II) - Cu-Ce 및 Cu-7Al의 효율 -)

  • 신창섭
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.4
    • /
    • pp.288-294
    • /
    • 1993
  • Flue gas control systems for small-scale combustors must be designed to provide highly effective removal of three criteria pollutants (S $O_{2}$, N $O_{x}$ and particulate matter), and must be safe, reliable and small. These requirements make dry, regenerative clean-up process particularly attractive and this paper describes a new concept for integrated pollutant control : a filter comprised of layered, gas permeable membranes that act as an S $O_{2}$ sorbant, a N $O_{x}$ reduction catalyst and a particulate filter. A mixed metal oxide sorbent, Cu-Ce was used as a sorbent/catalyst and the activity was compared with Cu-7Al. The S $O_{2}$ removal eficiency of Cu-Ce was increased with temperature increase up to 500$^{\circ}$C and the catalytic activity for NO was higher than that of Cu-7Al. By the sulfation of Cu-Ce, the reduction activity was increased at the temperature higher than 350$^{\circ}$C. The regeneration of Cu-Ce was very fast and some amount of elemental sulfar was found.

  • PDF

Preparation of CdS-pillared $H_4Nb_6O_7$ and Photochemical Reduction of Nitrate under Visible Light Irradiation

  • Tawkaew, Sittinun;Fujishiro, Yoshinobu;Uchida, Satoshi;Sato, Tsugio
    • The Korean Journal of Ceramics
    • /
    • v.6 no.1
    • /
    • pp.43-46
    • /
    • 2000
  • $H_4Nb_6/O_{17}$/CdS nanocomposites which intercalated CdS particles, less than 0.8nm thickness, in the interlayer of $H_4Nb_6/O_{17}$ were prepared by the successive ion exchange reactions of $H_4Nb_6/O_{17}$ with $Cd^{2+}$ and $C_3H_7NH_3_+$, followed by the reaction with $H_2S$ gas. $H_4Nb_6/O_{17}$/CdS photocatalytically reduced $NO_3$ ̄ to $NO_2$ ̄ and $NH_3$in the presence of sacrificial hole acceptor such as methanol under visible light irradiation (wavelength>400nm), although unsupported CdS showed no noticeable photocatalytic activity for $NO_3$ ̄ reduction. The catalytic activity of $H_4Nb_6/O_{17}$/CdS greatly enhanced with co-doping of Pt particles in the interlayer.

  • PDF

Simple Electrochemical Immunosensor for the Determination of Rabbit IgG Using Osmium Redox Polymer Films

  • Choi, Young-Bong;Lee, Seung-Hwa;Tae, Gun-Sik
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.229-232
    • /
    • 2007
  • An amperometric immunosensor for the determination of rabbit IgG is proposed. The immunoassay utilizes a screen-printed carbon electrode on which osmium redox polymer is electrodeposited. This immunoassay detects 0.1 ng/ml of rabbit IgG, which is ${\sim}10^2$ fold higher than the most sensitive enzyme amplified amperometric immunoassay. The assay utilizes a screen-printed carbon electrode which was pre-coated by a co-electrodeposited film of an electron conducting redox hydrogel and a rabbit IgG. The rabbit IgG in the electron conducting film conjugates captures, when present, the anti-rabbit IgG. The captured anti-rabbit-IgG is labeled with horseradish peroxidase (HRP) which catalyzes the two-electron reduction of $H_2O_2$ to water. Because the redox hydrogel electrically connects HRP reaction centers to the electrode, completion of the sandwich converts the film from non-electrocatalytic to electro-catalytic for the reduction of $H_2O_2$ to $H_2O$ when the electrode is poised at 200 mV vs. Ag/AgCl.

Investigation on the DeNOx Efficiency in Urea-SCR System at Various Operating Conditions and Injection Characteristics for a Passenger Diesel Engine (승용디젤엔진의 운전 조건 및 분사 조건 변경에 따른 Urea-SCR 시스템의 NOx 전환효율에 관한 연구)

  • Hong, Kil-Hwa;Hwang, In-Goo;Myung, Cha-Lee;Park, Sim-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.952-960
    • /
    • 2009
  • Selective Catalytic Reduction (SCR) system is a high-effective NOx reduction technology in diesel engines. As the emission standard of diesel engines is more stringent, vehicle manufactures makes efforts on emission technologies. This paper discusses the performance of Urea-SCR system according to the engine operating conditions in a passenger diesel engine. Engine test results in this paper show that it is important to consider the catalyst temperature and space velocity to obtain high NOx conversion efficiency. In condition of high catalyst temperature, over 90% NOx conversion efficiency is indicated. However, when catalyst temperature is low, NOx conversion efficiency was decreased. Also, it was shown that space velocity mainly effects on the DeNOx performance under 220 degree celsius of SCR catalyst temperature. As the urea injection pressure was decreased, NOx conversion efficiency was declined. It is concerned about urea droplet atomization. This work shown in this paper can lead to improved overall NOx conversion efficiency.

Electro-Catalytic Hydrogenation and the Electrode Reaction Mechanism of the Carbon-6-Bromo groups of 6,6-Dibromopenicillanic acid 1,1-Dioxide (6,6-Dibromopenicillanic acid 1,1-Dioxide 분자내 탄소 6-위치 브롬기의 전극촉매 수소화반응과 전극반응기구)

  • Il Kwang Kim;Young Haeng Lee;Chai Ho Lee
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.165-171
    • /
    • 1991
  • The electrochemical reduction of carbon-6-dibromo groups on 6,6-dibromo penicillanic acid 1,1-oxide(DBPA) was investigated by direct current, differential pulse polarography, cyclic voltammetry and controlled potential coulometry. The irreversible two electrons transfer on the reductive debromination of each bromo group proceeded by EC,EC mechanism at the two electrode reduction steps(-0.48, -1.62 volts). The 6-bromo-PA and 6,6-dihydro-PA was synthesized by controlled potential electrolysis. Upon the basis of results on the products analysis and interpretation of polarograms obtained at various pH, electrochemical reaction mechanism was suggested.

  • PDF

Chemical Modification of Residue of Lysine, Tryptophan, and Cysteine in Spinach Glycolate Oxidase

  • Lee, Duk-Gun;Cho, Nam-Jeong;Choi, Jung-Do
    • BMB Reports
    • /
    • v.29 no.4
    • /
    • pp.321-326
    • /
    • 1996
  • Spinach glycolate oxidase was subjected to a series of chemical modifications aimed at identifying amino acid residues essential for catalytic activity. The oxidase was reversibly inactivated by treatment with pyridoxal 5'-phosphate (PLP). The inactivation by PLP was accompanied by the appearance of an absorption peak of around 430 nm, which was shifted to 325 nm upon reduction with $NaBH_4$. After reduction, the PLP-treated oxidase showed a fluorescence spectrum with a maximum of around 395 nm by exciting at 325 nm. The substrate-competitive inhibitors oxalate and oxaloacetate provided protection against inactivation of the oxidase by PLP. These results suggest that PLP inactivates the enzyme by fonning a Schiff base with lysyl residue(s) at an active site of the oxidase. The enzyme was also inactivated by tryptophan-specific reagent N-bromosuccinimide (NBS). However, competitive inhibitors oxalate and oxaloacetate could not protect the oxidase significantly against inactivation of the enzyme by NBS. The results implicate that the inactivation of the oxidase by NBS is not directly related to modification of the tryptophanyl residue at an active site of the enzyme. Treatments of the oxidase with cysteine-specific reagents iodoacetate, silver nitrate, and 5,5'-dithiobis-2-nitrobenzoic acid did not affect significantly the activity of the enzyme.

  • PDF