DOI QR코드

DOI QR Code

Simple Electrochemical Immunosensor for the Determination of Rabbit IgG Using Osmium Redox Polymer Films

  • Published : 2007.08.28

Abstract

An amperometric immunosensor for the determination of rabbit IgG is proposed. The immunoassay utilizes a screen-printed carbon electrode on which osmium redox polymer is electrodeposited. This immunoassay detects 0.1 ng/ml of rabbit IgG, which is ${\sim}10^2$ fold higher than the most sensitive enzyme amplified amperometric immunoassay. The assay utilizes a screen-printed carbon electrode which was pre-coated by a co-electrodeposited film of an electron conducting redox hydrogel and a rabbit IgG. The rabbit IgG in the electron conducting film conjugates captures, when present, the anti-rabbit IgG. The captured anti-rabbit-IgG is labeled with horseradish peroxidase (HRP) which catalyzes the two-electron reduction of $H_2O_2$ to water. Because the redox hydrogel electrically connects HRP reaction centers to the electrode, completion of the sandwich converts the film from non-electrocatalytic to electro-catalytic for the reduction of $H_2O_2$ to $H_2O$ when the electrode is poised at 200 mV vs. Ag/AgCl.

Keywords

References

  1. R. S. Yalow and S. A. Berson, Nature, 51,1648 (1960)
  2. R. P. Ekins, Clin. Chim. Acta., 5, 453 (1960) https://doi.org/10.1016/0009-8981(60)90051-6
  3. L. J. Sokoll and D. W. Chan, Anal. Chem., 71, 356 (1999) https://doi.org/10.1021/a1999910i
  4. L. X. Tiefenauer, S. Kossek, C. Padesie and P. Thiebaud, Biosens. Bioelectron., 12, 213 (1997) https://doi.org/10.1016/S0956-5663(97)85339-0
  5. J. Wang, J. Phar. Biomed. Anal., 19, 47 (1999) https://doi.org/10.1016/S0731-7085(98)00056-9
  6. G. Marko-varga, J. Emneus, L. Gorton and T. Ruzgas, Anal. Chem., 14, 319 (1995)
  7. A. R. Dunn and J. A. Hassell, Cell, 12, 23 (1977) https://doi.org/10.1016/0092-8674(77)90182-9
  8. M. Ranki, A. Palva, M. Virtanen, M. Laaksonen and H. Soderlund, Gene, 21, 77 (1983) https://doi.org/10.1016/0378-1119(83)90149-X
  9. P. Dahlen, A.-C. Syvanen, P. Hurskainen, M. Kwiatkowski, C. Sund, J. Ylikoski, H. Soderlund and T. Lovgren, Mol. Cell Probes, 1, 159 (1987) https://doi.org/10.1016/0890-8508(87)90024-7
  10. R. M. Umek, S. W. Lin, J. Vielmetter, R. H. Terbrueggen, B. Irvine, C. J. Yu, J. F. Kayyem, H. Yowanto, G. F. Blackburn, D. H. Farkas and Y.-P. Chen, J. Mol. Diagn., 3, 74 (2001) https://doi.org/10.1016/S1525-1578(10)60655-1
  11. H. Korri-Youssoufi, F. Garnier, P. Srivastava, P. Godillot and A. Yassar, J. Am. Chem. Soc., 119, 7388 (1997) https://doi.org/10.1021/ja964261d
  12. A. Liu and J.-I. Anzai, Anal. Chem., 76, 2975 (2004) https://doi.org/10.1021/ac0303970
  13. E. Dominguez, O. Rincon and A. Navaez, Anal. Chem., 76, 3132 (2004) https://doi.org/10.1021/ac0499672
  14. J. Zhang, S. Song, L. Zhang, L. Wang, H. Wu, D. Pan and C. Fan, J. Am. Chem. Soc., 128, 8575 (2006) https://doi.org/10.1021/ja061521a
  15. J. Yang, T. Yang, Y. Feng and K. Jiao, Anal. Biochem., 365, 24 (2007) https://doi.org/10.1016/j.ab.2006.12.039
  16. C. N. Campbell, D. Gal, N. Cristler, C. Banditrat and A. Heller, Anal. Chem., 74, 158 (2002) https://doi.org/10.1021/ac015602v
  17. D. J. Caruana and A. Heller, J. Arn. Chem. Soc., 121, 769 (1999) https://doi.org/10.1021/ja983328p
  18. M. Dequaire and A. Heller, Anal. Chem., 74, 4370 (2002) https://doi.org/10.1021/ac025541g
  19. Y. Zhang, H.-H. Kim, N. Mano, M. Dequaire and A. Heller, Anal. Bioanal. Chem., 374, 1050 (2002) https://doi.org/10.1007/s00216-002-1604-4
  20. Y. Zhang, H.-H. Kim and A. Heller, Anal. Chem., 75, 3267 (2003) https://doi.org/10.1021/ac034445s
  21. Z. Gao, G. Binyamin, H.-H. Kim, S. C. Barton, Y. Zhang and A. Heller, Angew. Chem. Int. Ed., 41, 810 (2002) https://doi.org/10.1002/1521-3773(20020301)41:5<810::AID-ANIE810>3.0.CO;2-I
  22. S. C. Barton, H.-H. Kim, G. Binyamin, Y. Zhang and A. Heller, J. Phys. Chem. B, 105, 11917(2001) https://doi.org/10.1021/jp012488b