• Title/Summary/Keyword: catalytic reactivity

Search Result 128, Processing Time 0.024 seconds

Enzymatic transesterification for the synthesis of amino acid-sugar conjugates

  • Jeon, Gyu-Jong;Park, O-Jin;Yang, Ji-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.107-110
    • /
    • 2001
  • Among the tested ten enzymes, Optimase M-440 showed the highest activity in transesterification of N-t-Boc-L-Phe-OTFE with D-glucose. Monosaccharides and their derivatives acted as good acyl acceptors in the Optimase M -440 catalyzed transesterification of N-t-Boc-L-Phe-OTFE. Optimase M-440 showed a preferable catalytic activity on the primary hydroxyl group of saccharides and a good regioselectivity. Optimase M-440 showed the highest activity in pyricline among the tested solvents. As acyl donors, trifluoroethyl esters of amino acids showed a high reactivity in transesterification. Optimase M-440 showed a broad substrate specificity towards amin 。 acid esters and saccharides.

  • PDF

The study of Synthesis of Dihydropyrimidine for Cardiotropic Drugs Using New Catalysts on the Basis of Nano Cu Oxides (신촉매 나노 구리산화물을 이용한 심혈관 의약품용 Dihydropyrimidine 제조 연구)

  • Uhm Y. R.;Lee M. K.;Rhee C. K.
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.441-446
    • /
    • 2005
  • The copper oxide nano powders were synthesized by levitational gas condensation (LGC) method, and were applied to catalyst to fabricate 3,4-dihydropyrimidin-2-(1H)-one. Processes of adsorption of Biginelli reaction reagents on the copper nanooxide surface $Cu_2O{\circ}CuO$ were studied by IR-spectroscopy. It was shown that benzaldehyde coordination, acetoacetic ether on the oxide surface is carried out with participation of carbonyl fragments, urea by N-H bonds which affects positively on the reagents reactivity.

Electrochemical Removal Efficiency of Pollutants on ACF Electrodes

  • Oh, Won-Chun;Park, Joung-Sung;Lee, Ho-Jin;Yum, Min-Hyung
    • Carbon letters
    • /
    • v.5 no.4
    • /
    • pp.191-196
    • /
    • 2004
  • The electrochemical removal (ECR) of water pollutants by activated carbon fiber (ACF) electrodes from wastewater was investigated over wide range of electrochemical reaction time. The ECR capacities of ACF electrodes were associated with their internal porosity and were related to physical properties and to reaction time. And, surface morphologies and elemental analysis for the ACFs after electrochemical reaction are investigated by SEM and EDX to explain the changes in adsorption properties. The FT-IR spectra of ACFs for the investigation of functional groups show that the electrochemical treatment is consequently associated with the homogeneous removal of pollutants with the increasing surface reactivity of the activated carbon fiber surfaces. The ACFs were electrochemically reacted to waste water to investigate the removal efficiency for the COD, T-N and T-P. From these removal results of pollutants using ACFs substrate, satisfactory removal performance was obtained. The outstanding removal effects of the ACFs substrate were determined by the properties of the material for adsorption and trapping of organics, and catalytic effects.

  • PDF

Solvothermal Synthesis of Copper Indium Diselenide in Toluene

  • Chang, Ju-Yeon;Han, Jae-Eok;Jung, Duk-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.434-438
    • /
    • 2011
  • Polycrystalline $CuInSe_2$ (CIS) was synthesized through solvothermal reactions in toluene with selected alkyl amines as complexing agents. The alkyl amines were used as reducing agent of selenium and catalytic ligands, enhancing the formation of CIS compounds in the colloidal solution. Toluene does not contribute the syntheses directly but minimizes the amounts of amines required for single phase CIS. We systematically studied the reactivity of amine compounds for the solovothermal syntheses, determined critical concentration of amine and the shortest reaction time. Crystallinity, morphology, chemical composition, and band gap of the prepared $CuInSe_2$ were respectively measured by X-ray diffraction, scanning electron microscopy, inductively coupled plasma atomic emission spectroscopy and UV-vis spectroscopy.

Catalytic Reactions of Ethanol over $TiO_2$-supported Vanadia Catalysts

  • Jeon, Byung-Wook;Kim, Yu-Kwon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.284-284
    • /
    • 2012
  • In this study, $V_2O_5/TiO_2$ catalyst was measured reactivity of ethanol when vanadia ratio was increasing. First, $V_2O_5/TiO_2$ catalyst was prepared to the increasing vanadia ($VO_x$) ratio as 0.2, 1, 10 wt%. And we were used X-ray diffraction (XRD), then not appear markedly peak to pure vanadia about XRD analysis. So we were decided vanadia that was evenly dispersed on $TiO_2$. Result about temperature-programmed reduction (TPR) analysis was obtained 3 reactions that was dehydrogenationfrom obtained to acetaldehyde, dehydration from obtained to ethylene, condensation from obtained to diethyl ether. If vanadia ratio was increasing in $V_2O_5/TiO_2$, reactions temperature of ethanol was known lower. And condensation into diethyl ether is quenched away with increasing vanadia loading. In addition, competition between reductive dehydration and oxidative dehydrogenation occurs, while the selectivity toward dehydrogenation is favored with increasing vanadia loading.

  • PDF

Effects for Coexistent Reductant to NOx Adsorption and Desorption of the NOx Storage Catalyst (공존 환원제가 NOx 흡장촉매의 NOx 흡$\cdot$ 탈착에 미치는 영향)

  • Lee, Choon-Hee;Choi, Byung-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.181-187
    • /
    • 2005
  • The behavior of fox adsorption and desorption of the NOx storage catalyst supported on Ba additive were studied by the TPA/TPD experiments and reactivity tests. Applying the transient responses and NOx TPA/TPD test by CLD were effective methods to analyze the characteristics of the NOx storage catalyst. NOx variation of the NOx storage catalyst in the lean air/fuel conditions according to temperature was dominated by NOx adsorption and desorption rather than catalytic reduction. The presence of reductants in the lean mixture promoted the NOx desorption at the $500^{\circ}C$ higher temperature. The temperatures for maximum NOx conversion with CH4 and $C_3H_6$ as a rich spike reductant appear around $500^{\circ}C\;and\; 400^{\circ}C$ respectively.

Synthesis of Chiral Intermediates Catalyzed by New Chiral Polymeric (Salen) Cobalt Complexes Bearing Lewis Acidic Metal Halides

  • Lee, Kwang-Yeon;Kawthekar, Rahul B.;Kim, Geon-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1553-1561
    • /
    • 2007
  • The new type of heterometallic chiral polymer salen complexes have been synthesized and it has been found that group 13 metal salts (AlCl3, GaCl3 and InCl3) combined to cobalt salen unit played the crucial role in the asymmetric kinetic resolution of racemic epoxides. Polymeric salen catalysts showed very high reactivity and enantioselectivity for the asymmetric ring opening of terminal epoxide with diverse nucleophiles. They provide the enantiopure useful chiral intermediates such as chiral terminal epoxides and α -aryloxy alcohols in one-step process. An efficient methodology for providing very high enantioselectivity can be achieved in the synthesis of valuable chiral building blocks via our catalytic system by combination of various asymmetric ring opening reactions.

1269S mutation in horse liver alcohol dehydrogenase S isoenzyme and its reactivity for steroids and retinoids

  • Ryu, Ji-Won;Lee, Kang-Man
    • Archives of Pharmacal Research
    • /
    • v.20 no.2
    • /
    • pp.115-121
    • /
    • 1997
  • Ile-269 in horse liver alcohol dehydrogenase isoenzyme S(HLADH-S) was mutated to serine by phosphorothioate-based site-directed mutagenesis in order to study the role of the residue in coenzyme binding. The specific activity of the mutant(1269S) enzyme to ethanol was increased 49-fold. All turnover numbers of 1269S enzyme toward 9 primary alcohols were increased. The mutant enzyme showed 3.6, 4.6, 11.6-fold higher catalytic efficiency for $5{\beta}$-androstane-3, 17-dione, $5{\beta}$-cholanic acid-3-one and retinal than wild-type, respectively. The reaction mechanism of 1269S enzyme was ordered bi bi as wild-type's. These results indicate that the hydrophobic interaction of Ile-269 residue with coenzyme plays an important role in dissociation of coenzyme from enzyme-coenzyme complex, which has been known as the rate limiting step of ADH reaction.

  • PDF

Regulation of Stereoselectivity and Reactivity in the Inter- and Intramolecular Allylic Transfer Reactions

  • Yu, Chan-Mo;Youn, Jin-soup;Jung, Hee-Keum
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.463-472
    • /
    • 2006
  • The preparation of enatiomerically enriched homoallylic alcohols through asymmetric addition of chiral allylic transfer reagents and allylating reagents with chiral catalysts to the carbonyl functionalities represents an important chemical transformation. Excellent progress has been made over past decade in the development and application of catalytic asymmetric allylic transfer reactions. In this account, our efforts for the various intermolecular allylic transfer reactions such as allylation, propargylation, allenylation, and dienylation utilizing accelerating strategy and sequential allylic transfer reactions to achieve multiple stereoselection mainly using transition metal catalysts are described.

REACTIVITY AND DURABILITY OF V2O5 CATALYSTS SUPPORTED ON SULFATED TIO2 FOR SELECTIVE REDUCTION OF NO BY NH3

  • Choo, Soo-Tae;Nam, Chang-Mo
    • Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.31-37
    • /
    • 2005
  • The selective catalytic experiments using both sulfated/sulfur-free titania and V2O5/TiO2 catalysts have been conducted for NO reduction by NH3 in a packed-bed, down-flow reactor. The sulfated and vanadia loaded titania exhibited higher activity for NO removal than the sulfur-free catalysts, where > 90% NO removal was achieved over the sulfated V2O5/TiO2 catalyst between 280∼500 C. The surface structure of vanadia species on the catalyst surface played a critical role in the high performance of catalysts in which the existence of monomeric/polymeric vanadate is revealed by Raman spectra studies. Water vapor and SO2 were added to the reacting system for the catalyst deactivation tests. At higher temperatures (T ≥ 350 C), little deactivation was observed over the sulfated V2O5/TiO2 catalysts, showing good durability against SO2 and water vapor, which is compared with deactivation at lower temperatures.