• Title/Summary/Keyword: catalytic nitrate reduction

Search Result 27, Processing Time 0.02 seconds

Preparation of CdS-pillared $H_4Nb_6O_7$ and Photochemical Reduction of Nitrate under Visible Light Irradiation

  • Tawkaew, Sittinun;Fujishiro, Yoshinobu;Uchida, Satoshi;Sato, Tsugio
    • The Korean Journal of Ceramics
    • /
    • v.6 no.1
    • /
    • pp.43-46
    • /
    • 2000
  • $H_4Nb_6/O_{17}$/CdS nanocomposites which intercalated CdS particles, less than 0.8nm thickness, in the interlayer of $H_4Nb_6/O_{17}$ were prepared by the successive ion exchange reactions of $H_4Nb_6/O_{17}$ with $Cd^{2+}$ and $C_3H_7NH_3_+$, followed by the reaction with $H_2S$ gas. $H_4Nb_6/O_{17}$/CdS photocatalytically reduced $NO_3$ ̄ to $NO_2$ ̄ and $NH_3$in the presence of sacrificial hole acceptor such as methanol under visible light irradiation (wavelength>400nm), although unsupported CdS showed no noticeable photocatalytic activity for $NO_3$ ̄ reduction. The catalytic activity of $H_4Nb_6/O_{17}$/CdS greatly enhanced with co-doping of Pt particles in the interlayer.

  • PDF

Chemical Modification of Residue of Lysine, Tryptophan, and Cysteine in Spinach Glycolate Oxidase

  • Lee, Duk-Gun;Cho, Nam-Jeong;Choi, Jung-Do
    • BMB Reports
    • /
    • v.29 no.4
    • /
    • pp.321-326
    • /
    • 1996
  • Spinach glycolate oxidase was subjected to a series of chemical modifications aimed at identifying amino acid residues essential for catalytic activity. The oxidase was reversibly inactivated by treatment with pyridoxal 5'-phosphate (PLP). The inactivation by PLP was accompanied by the appearance of an absorption peak of around 430 nm, which was shifted to 325 nm upon reduction with $NaBH_4$. After reduction, the PLP-treated oxidase showed a fluorescence spectrum with a maximum of around 395 nm by exciting at 325 nm. The substrate-competitive inhibitors oxalate and oxaloacetate provided protection against inactivation of the oxidase by PLP. These results suggest that PLP inactivates the enzyme by fonning a Schiff base with lysyl residue(s) at an active site of the oxidase. The enzyme was also inactivated by tryptophan-specific reagent N-bromosuccinimide (NBS). However, competitive inhibitors oxalate and oxaloacetate could not protect the oxidase significantly against inactivation of the enzyme by NBS. The results implicate that the inactivation of the oxidase by NBS is not directly related to modification of the tryptophanyl residue at an active site of the enzyme. Treatments of the oxidase with cysteine-specific reagents iodoacetate, silver nitrate, and 5,5'-dithiobis-2-nitrobenzoic acid did not affect significantly the activity of the enzyme.

  • PDF

Spectral, Electrochemical, Fluorescence, Kinetic and Anti-microbial Studies of Acyclic Schiff-base Gadolinium(III) Complexes

  • Vijayaraj, A.;Prabu, R.;Suresh, R.;Kumari, R. Sangeetha;Kaviyarasan, V.;Narayanan, V.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3581-3588
    • /
    • 2012
  • A new series of acyclic mononuclear gadolinium(III) complexes have been prepared by Schiff-base condensation derived from 5-methylsalicylaldehyde, diethylenetriamine, tris(2-aminoethyl) amine, triethylenetetramine, N,N-bis(3-aminopropyl)ethylene diamine, N,N-bis(aminopropyl) piperazine, and gadolinium nitrate. All the complexes were characterized by elemental and spectral analyses. Electronic spectra of the complexes show azomethine (CH=N) within the range of 410-420 nm. The fluorescence efficiency of Gd(III) ion in the cavity was completely quenched by the higher chain length ligands. Electrochemical studies of the complexes show irreversible one electron reduction process around -2.15 to -1.60 V The reduction potential of gadolinium(III) complexes shifts towards anodic directions respectively upon increasing the chain length. The catalytic activity of the gadolinium(III) complexes on the hydrolysis of 4-nitrophenylphosphate was determined. All gadolinium(III) complexes were screened for antibacterial activity.

Synthesis of Pt-Bi/Carbon Electrodes by Reduction Method for Direct Methanol Fuel Cell (환원법에 의한 직접 메탄올 연료전지(DMFC)용 Pt-Bi/Carbon 전극제조)

  • Kim, Kwan Sung;Kim, Min Kyung;Noh, Dong Kyun;Tak, Yongsug;Baeck, Sung-Hyeon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.479-485
    • /
    • 2011
  • Pt-Bi/C catalysts supported on carbon black with various Pt/Bi ratios were synthesized by a reduction method. Chloroplatinic acid hydrate ($H_2PtCl_6{\cdot}xH_2O$) and bismuth (III) nitrate pentahydrate ($Bi(NO_3)_3{\cdot}5H_2O$) were used as precursors for Pt and Bi, respectively. Before loading metal on carbon, heat treatment and pretreatment of carbon black in an acidic solution was conducted to enhance the degree of dispersion. The physical property of the synthesized catalysts was investigated by X-ray diffraction and X-ray photoelectron spectroscopy. The XRD pattern of untreated Pt-Bi/C catalyst showed BiPt and $Bi_2Pt$ peaks in addition to Pt peaks. These results imply that Bi atoms were incorporated into the Pt crystal lattice by Pt-Bi alloy formation. The catalytic activity for methanol oxidation was measured using cyclic voltammetry in a mixture of 0.5 M $H_2SO_4$ and 0.5 M $CH_3OH$ aqueous solution. The addition of proper amount of Bi was found to significantly improve catalytic activity for methanol oxidation. The catalytic activity for methanol oxidation was closely related to the stability between electrode and electrolyte. In order to investigate the stability of catalysts, chronoamperometry analysis was carried out in the same solution at 0.6 V.

Catalytic CO2 Methanation over Ni Catalyst Supported on Metal-Ceramic Core-Shell Microstructures (금속-세라믹 코어-쉘 복합체에 담지된 Ni 금속 촉매를 적용한 CO2 메탄화 반응 특성연구)

  • Lee, Hyunju;Han, Dohyun;Lee, Doohwan
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.154-162
    • /
    • 2022
  • Microstructured Al@Al2O3 and Al@Ni-Al LDH (LDH = layered double hydroxide) core-shell metal-ceramic composites are prepared by hydrothermal reactions of aluminum (Al) metal substrates. Controlled hydrothermal reactions of Al metal substrates induce the hydrothermal dissolution of Al ions at the Al-substrate/solution interface and reconstruction as porous metal-hydroxides on the Al substrate, thereby constructing unique metal-ceramic core-shell composite structures. The morphology, composition, and crystal structure of the core-shell composites are affected largely by the ions in the hydrothermal solution; therefore, the critical physicochemical and surface properties of these unique metal-ceramic core-shell microstructures can be modulated effectively by varying the solution composition. A Ni/Al@Al2O3 catalyst with highly dispersed catalytic Ni nanoparticles on an Al@Al2O3 core-shell substrate was prepared by a controlled reduction of an Al@Ni-Al LDH core-shell prepared by hydrothermal reactions of Al in nickel nitrate solution. The reduction of Al@Ni-Al LDH leads to the exolution of Ni ions from the LDH shell, thereby constructing the Ni nanoparticles dispersed on the Al@Al2O3. The catalytic properties of the Ni/Al@Al2O3 catalyst were investigated for CO2 methanation reactions. The Ni/Al@Al2O3 catalyst exhibited 2 times greater CO2 conversion than a Ni/Al2O3 catalyst prepared by conventional incipient wetness impregnation and showed high structural stability. These results demonstrate the high effectiveness of the design and synthesis methods for the metal-ceramic composite catalysts derived by hydrothermal reactions of Al metal substrates.

An Experimental Study of Nano PM Emission Characteristics of Commercial Diesel Engine with Urea-SCR System to Meet EURO-IV (상용디젤엔진의 EURO-IV 배기규제 대응을 위한 Urea-SCR 시스템의 나노입자 배출특성에 관한 실험적 연구)

  • Lee, Chun-Hwan;Cho, Taik-Dong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.128-136
    • /
    • 2007
  • It is well known that two representative methods satisfy EURO-IV regulation from EURO-III. The first method is to achieve the regulation through the reduction of NOx in an engine by utilizing relatively high EGR rate and the elimination of subsequently increased PM by DPF. However, it results in the deterioration of fuel economy due to relatively high EGR rate. The second is to use the high combustion strategy to reduce PM emission by high oxidation rate and trap the high NOx emissions with DeNOx catalysts such as Urea-SCR. While it has good fuel economy relative to the first method mentioned above, its infrastructure is demanded. In this paper, the number distribution of nano PM has been evaluated by Electrical Low Pressure Impactor(ELPI) and CPC in case of Urea-SCR system in second method. From the results, the particle number was increased slightly in proportion to the amount of urea injection on Fine Particle Region, whether AOC is used or not. Especially, in case of different urea injection pressure, the trends of increasing was distinguished from low and high injection pressure. As low injection pressure, the particle number was increased largely in accordance with the amount of injected urea solution on Fine Particle Region. But Nano Particle Region was not. The other side, in case of high pressure, increasing rate of particle number was larger than low pressure injection on Nano Particle Region. From the results, the reason of particle number increase due to urea injection is supposed that new products are composited from HCNO, sulfate, NH3 on urea decomposition process.

Characteristics of Low Temperature De-NOx Process with Non-thermal Plasma and NH3 Selective Catalytic Reduction (I) (저온 플라즈마 및 암모니아 선택적 환원공정을 활용한 저온 탈질공정의 특성(I))

  • Lee, Jae-Ok;Song, Young-Hoon
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.409-413
    • /
    • 2006
  • An experimental study on a combined $De-NO_x$ process of non-thermal plasma and $NH_{3}$ SCR, which can be operated under low temperature conditions, i.e. $150{\sim}200^{\circ}C$, has been conducted. The test results confirmed feasibility of fast SCR reaction, which shows faster reactivity compared with typical SCR reaction under the low temperature conditions. The test showed that pre-oxidation step to convert NO to $NO_2$ is necessary for the fast SCR reaction, and the appropriate ratio of $NO_{2}/NO_{x}$ ranges from 0.3 to 0.5. Ammonium salts produced under low temperature conditions, effects of hydrocarbons on the combined process, the operation power of the process are discussed in the present study.