Browse > Article
http://dx.doi.org/10.14478/ace.2011.22.5.479

Synthesis of Pt-Bi/Carbon Electrodes by Reduction Method for Direct Methanol Fuel Cell  

Kim, Kwan Sung (Department of Chemical Engineering, Inha University)
Kim, Min Kyung (Department of Chemical Engineering, Inha University)
Noh, Dong Kyun (Department of Chemical Engineering, Inha University)
Tak, Yongsug (Department of Chemical Engineering, Inha University)
Baeck, Sung-Hyeon (Department of Chemical Engineering, Inha University)
Publication Information
Applied Chemistry for Engineering / v.22, no.5, 2011 , pp. 479-485 More about this Journal
Abstract
Pt-Bi/C catalysts supported on carbon black with various Pt/Bi ratios were synthesized by a reduction method. Chloroplatinic acid hydrate ($H_2PtCl_6{\cdot}xH_2O$) and bismuth (III) nitrate pentahydrate ($Bi(NO_3)_3{\cdot}5H_2O$) were used as precursors for Pt and Bi, respectively. Before loading metal on carbon, heat treatment and pretreatment of carbon black in an acidic solution was conducted to enhance the degree of dispersion. The physical property of the synthesized catalysts was investigated by X-ray diffraction and X-ray photoelectron spectroscopy. The XRD pattern of untreated Pt-Bi/C catalyst showed BiPt and $Bi_2Pt$ peaks in addition to Pt peaks. These results imply that Bi atoms were incorporated into the Pt crystal lattice by Pt-Bi alloy formation. The catalytic activity for methanol oxidation was measured using cyclic voltammetry in a mixture of 0.5 M $H_2SO_4$ and 0.5 M $CH_3OH$ aqueous solution. The addition of proper amount of Bi was found to significantly improve catalytic activity for methanol oxidation. The catalytic activity for methanol oxidation was closely related to the stability between electrode and electrolyte. In order to investigate the stability of catalysts, chronoamperometry analysis was carried out in the same solution at 0.6 V.
Keywords
reduction method; Pt-Bi/C; methanol oxidation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 W. Li, Q. Xin, and Y. Yan, Int. J. Hydrogen Energy, 35, 2530 (2010).   DOI   ScienceOn
2 A. Hamnett, Catalysis Today, 38, 445 (1997).   DOI   ScienceOn
3 B. D. McNicol, D. A. J. Rand, and K. R. Willaiams, J. Power Sources, 83, 15 (1999).   DOI   ScienceOn
4 S. Wasmus and A. Kuver, J. Electroanal. Chem., 461, 14 (1999).   DOI   ScienceOn
5 X. Ren, P. Zelenay, S. Thomas, J. Davey, and S. Gottesfeld, J. Power Sources, 86, 111 (2000).   DOI   ScienceOn
6 A. S. Aricò, S. Srinivasan, and V. Antonucci, Fuel Cells, 2, 133 (2001).
7 W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun, and Q. Xin, J. Phys. Chem., 107, 6292 (2003).   DOI   ScienceOn
8 J. S. Lee, K. I. Han, S. O. Park, H. N. Kim, and H. S. Kim, Electrochim. Acta, 50, 807 (2004).   DOI   ScienceOn
9 C. H. Pak, S. J. Lee, S. A. Lee, and H. Chang, Korean J. Chem. Eng., 22, 214 (2005).   DOI   ScienceOn
10 M. Kimberly, G. K. Mcgrath, S. Prakash, and G. A. Olah, J. Ind. Eng. Chem., 10, 1063 (2004).
11 P. Statti, Z. Poltarzewski, V. Alderucci, G. Maggio, and N. Giordano, Int. J. Hydrogen Energy, 19, 523 (1994).   DOI   ScienceOn
12 S. C. Hall, V. Subramanian, G. Teeter, and B. Rambabu, Solid State Ionics, 175, 809 (2004).   DOI   ScienceOn
13 H. Wang, Z. Jusys, and R. J. Behm, J. Power Sources, 154, 351 (2006).   DOI   ScienceOn
14 F. Delime, J. M. Leger, and C. Lamy, J. Appl. Electrochem., 29, 1249 (1999).   DOI   ScienceOn
15 G. C. Li and P. G. Pickup, Electrochim. Acta, 52, 1033 (2006).   DOI   ScienceOn
16 Y. J. Jung, S. Kim, S. J. Park, and J. M. Kim, Colloids Surf. A: Physicochem. Eng. Asp., 167, 313 (2008).
17 C. A. Bessel, K. Laubernds, N. M. Rodriguez, and R. T. K. Baker, J. Phys. Chem. B, 105, 1115 (2001).
18 S. Ueda, M. Eguchi, K. Uno, Y. Tsutsumi, and N. Ogawa, Solid State Ionics, 177, 175 (2006).   DOI   ScienceOn
19 G. S. Chai, S. B. Yoon, J. S. Yu, J. H. Choi, and Y. E. Sung, J. Phys. Chem. B, 108, 7074 (2004).   DOI   ScienceOn
20 Y. Lin, X. Cui, C. Yen, and C. M. Wai, J. Phys. Chem. B, 109, 14410 (2005).   DOI   ScienceOn
21 X. Li, G. Chen, J. Xie, L. Zhang, D. Xia, and Z. Wu, J. Electrochem. Soc., 157, B580 (2010).   DOI   ScienceOn
22 J.-S. Do, Y.-T. Chen, and M.-H. Lee, J. Power Sources, 172, 623 (2007).   DOI   ScienceOn
23 J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradly, and P. J. Boul, Science, 280, 1253 (1998).   DOI   ScienceOn
24 B. C. Satishkumar, E. M. Vogl, A. Govindaraj, and C. N. R. Rao, J. Phys. D, 29, 3173 (1996).   DOI   ScienceOn
25 B. C. Satishkumar, A. Govindaraj, J. Mofokeng, G. N. Shbbanna, and C. N. R. Rao, J. Phys. B: At. Mol. Opt. Phys., 29, 4925 (1996).   DOI   ScienceOn
26 D. M. Han, Z. P. Guo, R. Zeng, C. J. Kim, Y. Z. Meng, and H. K. Liu, Int. J. Hydrogen Energy, 34, 2426 (2009).   DOI   ScienceOn
27 F. Dawood, B. M. Leonard, and R. E. Schaak, Chem. Mater., 19, 4545 (2007).   DOI   ScienceOn
28 C. Jeyabharathi, J. Mathiyarasu, and K. L. N. Phani, J. Appl. Electrochem., 39, 45 (2009).   DOI   ScienceOn
29 A. V. Tripkovic, K. Dj. Popovic, R. M. Stevanovic, R. Socha, and A. Kowal, Electrochemistry Communications, 8, 1492 (2006).   DOI   ScienceOn
30 K. J. J. Mayrhofer, J. C. Meier, S. J. Ashton, G. K. H. Wiberg, F. Kraus, M. Hanzlik, and M. Arenz, Electrochemistry Communications, 10, 1144 (2008).   DOI   ScienceOn
31 Z. Siroma, K. Ishii, K. Yasuda, M. Inaba, and A. Tasaka, J. Power Sources, 171, 524 (2007).   DOI   ScienceOn
32 A. S. AriCo, S. Srinivasan, and V. Antonucci, Fuel Cells, 1, 133 (2001).   DOI   ScienceOn
33 P. Liu and J. K. Norskov, Fuel Cells, 1, 192 (2001).   DOI   ScienceOn
34 T. Frelink, W. Visscher, and J. A. R. van Veen, Surf. Sci., 335, 353 (1995).   DOI
35 G. Samjeske, H. Wang, T. Loffler, and H. Baltruschat, Electrochim. Acta, 47, 3681 (2002).   DOI   ScienceOn