• 제목/요약/키워드: catalyst supports

Search Result 133, Processing Time 0.024 seconds

Effect of Chemical Modification of Carbon Supports on Electrochemical Activities for Pt-Ru Catalysts of Fuel Cells (탄소지지체의 화학적 변형에 따른 연료전지용 백금-루테늄 촉매의 전기화학적 활성의 영향)

  • Kim, Byung-Ju;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.94.1-94.1
    • /
    • 2011
  • In this work, ordered mesoporous carbons (OMCs) were prepared by the conventional templating method using mesoporous silica (SBA-15) for Pt-Ru catalyst supports in fuel cells. The influence of surface modification on carbon supports on the electrochemical activities of Pt-Ru/OMCs was investigated with different pH. The neutral-treated OMCs (N-OMCs), base-treated OMCs (B-OMCs), and acid-treated OMCs (A-OMCs) were prepared by treating OMCs with 2 M $C_6H_6$, 2 M KOH, and 2 M $H_3PO_4$, respectively. The surface characteristic of the carbon supports were determined X-ray photoelectron spectroscopy (XPS). The electrochemical activities of the Pt-Ru catalysts had been enhanced when the OMCs supports were treated by basic or neutral agents, while the electrochemical activities had been decayed for the A-OMCs supported Pt-Ru.

  • PDF

Hydrogen Production Through Catalytic Dehydrogenation of Decalin over Pt/C Catalyst Using Activated Carbon Aerogel

  • Lee, Gihoon;Kang, Ji Yeon;Jeong, Yeojin;Jung, Ji Chul
    • Korean Journal of Materials Research
    • /
    • v.25 no.4
    • /
    • pp.191-195
    • /
    • 2015
  • To improve its textural properties as a support for platinum catalyst, carbon aerogel was chemically activated with KOH as a chemical agent. Carbon-supported platinum catalyst was subsequently prepared using the prepared carbon supports(carbon aerogel(CA), activated carbon aerogel(ACA), and commercial activated carbon(AC)) by an incipient wetness impregnation. The prepared carbon-supported platinum catalysts were applied to decalin dehydrogenation for hydrogen production. Both initial hydrogen evolution rate and total hydrogen evolution amount were increased in the order of Pt/CA < Pt/AC < Pt/ACA. This means that the chemical activation process served to improve the catalytic activity of carbon-supported platinum catalyst in this reaction. The high surface area and the well-developed mesoporous structure of activated carbon aerogel obtained from the activation process facilitated the high dispersion of platinum in the Pt/ACA catalyst. Therefore, it is concluded that the enhanced catalytic activity of Pt/ACA catalyst in decalin dehydrogenation was due to the high platinum surface area that originated from the high dispersion of platinum.

Preparation of Porous Carbon Support Using Carbon Nanofiber (나노탄소섬유를 이용한 다공성 탄소담체의 제조와 반응 특성)

  • 김명수;정상원;우원준;임연수
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.5
    • /
    • pp.504-512
    • /
    • 1999
  • The high-quality carbon nanofibers were prepared by chemical vapor deposition of gas mixtures of CO-H2 and C3H8-H2 over Fe-Cu and Ni-Cu bimetallic catalysts. The yield and structure of carbon nanofiber produced were altered by the change of catalyst composition and reaction temperature. The high yields were obtained around 500$^{\circ}C$ with e-Cu catalyst and around 700-750$^{\circ}C$ with Ni-Cu catalyst and the relatively higher yields were obtained with the bimetallic catalyst containing 50-90% of Ni and Fe respectively in comparison with the pure metals. The carbon nanofibers produced over the Fe-Cu catalyst at around 500$^{\circ}C$ with the maximum yields had the highest surface ares of 160-200 m2/g around 650$^{\circ}C$ which was slightly lower than the temperature for maximum yields. In order to examine the characteristics of carbon nanofibers as catalyst support Ni and Co metals were supporte on the carbon nanofibers and CO hydrogenation reaction was performed with the catalysts. The particle size distribution of Ni and Co supported over the carbon nanofibers were 6-15 nm and the CO hydrogenation reaction rate with the carbon-nanofiber supported catalysts was much higher than that over the other supports.

  • PDF

Methane Conversion over Supported Lead Oxide Catalysts (담지된 납산화물 촉매상에서 메탄의 전환반응)

  • Jang Jong-San;Park Sang-Eon
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.1
    • /
    • pp.147-156
    • /
    • 1992
  • Supported lead oxide catalysts were prepared by using ${\alpha}-,{\beta}-{\gamma}$-alumina, and MgO as a support. Among the supported lead oxide catalysts, MgO-supported catalyst showed the highest $C_2^+$ hydrocarbon selectivity for the methane conversion into $C_2^+$ hydrocarbons, but ${\gamma}$-alumina-supported PbO catalyst gave the highest $CO_2$ selectivity. And ${\alpha}$-alumina-supported catlyst showed the midium activity, whereas ${\beta}$-alumina-supported catalyst gave little activity. These reaction characteristics seemed to be largely dependent on the acticity of lattice oxygens in supported catalysts, which would be influnto be largely dependent on the activity of lattice oxygens in supported catalysts, which would be influenced in the interaction between the supports and lead oxides and the properties of supports. Especially, much higher ration of (002)/(111) peak intensities for PbO phase on MgO support than on the other supports in X-ray diffraction analysis was considered to be ab evidence that methane oxidative coupling of methane might be so-called structure-sensitive reaction, and this seemed to be an example of surface oxide-support interaction (SOSI) in the oxidative coupling reaction.

  • PDF

Effect of Pt amount in the Pt/C for cathode catalyst on the performance of PEMFC (고분자전해질 연료전지의 환원전극 백금 담지촉매의 백금 담지비에 따른 성능변화)

  • Cho, Yong-Hun;Cho, Yoon-Hwan;Park, Hyun-Seo;Sung, Yung-Eun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.107-109
    • /
    • 2006
  • This study focuses on a determination of amount of Pt in the Pt/C for catalysts of polymer electrolyte membrane fuel cells (PEMFC). PEMFC offer low weight and high power density and being considered for automotive and stationary power applications. The PEMFC performance is influenced by several factors, including catalysts and structure of electrode and membrane type. Catalyst of electrode is important factor for PEMFC. One of the obstacles prevent ing polymer electrolyte membrane fuel cells from commercialization is the high cost of noble metals to be used as catalyst, such as platinum To effectively use these metals, they have to be will dispersed to small particles on conductive carbon supports. The optimal amount of Pt in Pt/C for cathode catalyst was investigated by using polarization curves in single cell with $H_2/O_2$ operation.

  • PDF

$Ni/\gamma -Al_2O_3$ Catalyst Prepared by Liquid Phase Oxidation for Carbon Dioxide Reforming of Methane

  • 정경수;조병율;이호인
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.89-94
    • /
    • 1999
  • Carbon dioxide reforming of methane on Ni/γ-Al2O3 catalyst was studied. A new 10 wt% Ni/γ-Al2O3 catalyst prepared by the liquid phase oxidation method (L10O) exhibited much higher activity as well as resistances to both sintering and coke formation during the reaction than the catalyst prepared by the conventional impregnation method (D10). The electrically strong attractive interaction between nickel and support during the liquid phase oxidation process and the resultant high nickel dispersion made the L10 have superior activity and stability to the D10. To elucidate the results, the experiments with nickel catalysts on the other supports as well as 7-AI203 were performed. The effect of sodium as a promoter was also studied.

Catalyst preparations, coating methods, and supports for micro combustor (초소형 연소기를 위한 촉매 합성, 담지방법 및 담지체)

  • Jin, Jung-Kun;Kim, Chung-Ki;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.235-241
    • /
    • 2006
  • Catalytic combustion is one of the suitable methods for micro power source due to high energy density and no flame quenching. Catalyst loading in the micro structured combustion chamber is one of the most important issues in the development of micro catalytic combustors. In this research, to coat catalyst on the chamber wall, two methods were investigated. First, $Al_2O_3$ was selected as a support of Pt and $Pt/Al_2O_3$ was synthesized through the alumina sol-gel procedure. To improve the coating thickness and adhesion between catalyst and substrate, heat resistant and water solvable organic-inorganic hybrid binder was used. Porous silicon was also investigated as a catalyst support for platinum. Through the parametric studies of current density and etching time, fabrication process of $1{\sim}2{\mu}m$ of diameter and about $25{\mu}m$ depth pores was confirmed. Coated substrates were test in the micro channel combustor which was fabricated by the wet etching and machining of SUS 304. Using $Pt/Al_2O_3$ coated substrate and Pt coated porous silicon substrate, conversion rate of fuel was over 95% for $H_2$/Air premixed gas.

  • PDF

Catalyst Preparations, Coating Methods, and Supports for Micro Combustor (초소형 연소기를 위한 촉매 합성, 담지방법 및 담지체)

  • Jin, Jung-Kun;Kim, Chung-Ki;Lee, Sung-Ho;Kwon, Se-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.2
    • /
    • pp.7-14
    • /
    • 2006
  • Catalytic combustion is one of the suitable methods for micro power source due to high energy density and it can be applied to micro structured chamber without consideration of quenching since it is flameless combustion. Catalyst loading in the micro structured combustion chamber is one of the most important issues in the development of micro catalytic combustors. In this research, to coat catalyst on the chamber wall, two methods were investigated. First, $Al_2O_3$ was selected as a support of Pt and $Pt/Al_2O_3$ was synthesized through the alumina sol-gel procedure. To improve the coating thickness and adhesion between catalyst and substrate, heat resistant and water solvable organic-inorganic hybrid binder was used. Porous silicon was also investigated as a catalyst support for platinum. Through the parametric studies of current density and etching time, fabrication process of $1{\sim}2{\mu}m$ of diameter and about $25{\mu}m$ depth pores was confirmed. Coated substrates were test in the micro channel combustor which was fabricated by the wet etching and machining of SUS 304. Using $Pt/Al_2O_3$ coated substrate and Pt coated porous silicon substrate, conversion rate of fuel was over 95 % for $H_2/Air$ premixed gas.

  • PDF

Effects of Calcination Temperature on Characteristics of Electrospun TiO2 Catalyst Supports for PEMFCs (열처리 온도가 전기방사방법을 이용하여 제조한 PEMFC용 TiO2 담체의 물리적 특성에 미치는 영향)

  • Kwon, Chorong;Yoo, Sungjong;Jang, Jonghyun;Kim, Hyoungjuhn;Kim, Jihyun;Cho, Eunae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.3
    • /
    • pp.223-229
    • /
    • 2013
  • Polymer Electrolyte Membrane Fuel Cell (PEMFC) is a power generation system to convert chemical energy of fuels and oxidants to electricity directly by electrochemical reactions. As a catalyst support for PEMFCs, carbon black has been generally used due to its large surface area and high electrical conductivity. However, under certain circumstances (start up/shut down, fuel starvation, ice formation etc.), carbon supports are subjected to serve corrosion in the presence of water. Therefore, it would be desirable to switch carbon supports to corrosion-resistive support materials such as metal oxide. $TiO_2$ has been attractive as a support with its stability in fuel cell operation atmosphere, low cost, commercial availability, and the ease to control size and structure. However, low electrical conductivity of $TiO_2$ still inhibits its application to catalyst support for PEMFCs. In this paper, to explore feasibility of $TiO_2$ as a catalyst support for PEMFCs, $TiO_2$ nanofibers were synthesized by electrospinning and calcinated at 600, 700, 800 and $900^{\circ}C$. Effects of calcination temperature on crystal structure and electrical conductivity of electrospun $TiO_2$ nanofibers were examined. Electrical conductivity of $TiO_2$ nanofibers increased significantly with increasing calcination temperature from $600^{\circ}C$ to $700^{\circ}C$ and then increased gradually with increasing the calcination temperature from $700^{\circ}C$ to $900^{\circ}C$. It was revealed that the remarkable increase in electrical conductivity could be attributed to phase transition of $TiO_2$ nanofibers from anatase to rutile at the temperature range from $600^{\circ}C$ to $700^{\circ}C$.