• Title/Summary/Keyword: catalase purification

Search Result 22, Processing Time 0.029 seconds

Purification and characterization of catalase-3 of deinococcus radiophilus

  • Lee, In-Jeong;Lee, young-Nam
    • Journal of Microbiology
    • /
    • v.33 no.3
    • /
    • pp.239-243
    • /
    • 1995
  • Deinococcus radiophilus, an UV resistant bacterium seemed to contain three issoenzymes of catalase. Among them, the samllest and most abundant species in cell-free extract, catalase-3 which also exhibited peroxidase activity was purified to electrophoretic homogeneity (145-fold purification) by chromatographic procedures. Its molecular weight was 155 kDa composed of four 38 kDa subunits. The $K_{m}$ value of catalase-3 for H$\_$2/O$\_$2/ was approximately 0.5 mM. This enzyme showed a typical ferric heme spectrum with maximum absorption at 405 nm. Upon binding to cyanide, the 405 nm peak shifted to 420 nm. Catalase-3 was very sensitive to inhibitors of heme proteins, such as cyanide, azide and hydroxylamine. A ratio of A$\_$405/A$\_$28O/ was 0.5 Catalase-3 was active over a wide range of pH, between pH 7 and 10. The enzyme was rather heat-labile and partially sensitive to edthanol-chloroform treatment, but resistant to 3-amino-1, 2, 4-triazole. Catalase-3 of D. radiophilus, which is a bifunction catalatic peroxidatic enzyme seemed to share certain molecular properties with the typical catalase and the catalase-[roxidase along with its own unique features.

  • PDF

Purification and Characterization of Catalase-2 from Deinococcus radiophilus

  • Oh, Kyung-A;Lee, Young-Nam
    • BMB Reports
    • /
    • v.31 no.2
    • /
    • pp.144-148
    • /
    • 1998
  • A bifunctional catalase-peroxidase, designated catalase-2, of a UV resistant Deinococcus radiophilus was purified to electrophoretic homogeneity by both chromatographic and electrophoretic methods. Its molecular weight was 310 kDa and composed of a tetramer of 80 kDa subunits. The catalase-2 exerted its optimal activity at $30^{\circ}C$ and around pH 9. Its $K_m$ value for $H_{2}0_{2} $ was about 10 mM. It showed the typical ferric heme spectrum with maximum absorption at 403 nm which shifted to 419 nm in the presence of cyanide. The ratio of A40i' A2S0 was 0.48. Fifty percent inhibition of the enzyme activity was observed at $4.6{\times}10^{-6}$, $7.7{\times}10^{-6}$, and $3.0{\times}10^{-6}$ M of NaCN, $NaN_3$, and $NH_{2}OH$, respectively. The enzyme was thermostable and not sensitive to 3-amino-1,2,4-triazole. Treatment of the enzyme with ethanol-chloroform caused a partial loss (30%) of its activity. The catalase-2 was distinct from the Deinococcal bifunctional catalase-3 in a number of properties, particularly in its molecular structure and substrate affinity.

  • PDF

Catalase from Aspergillus niger KUF-04 (Aspergillus niger KUF-04가 생산하는 Catalase)

  • Yang, Ho-Suk;Yang, Han-Chul;Yoshiki Tani
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.3
    • /
    • pp.193-198
    • /
    • 1988
  • Catalase from Aspergillus niger KUF-04 was purified by five steps including gel filtration. The overall purification gave 64-fold purified preparation, a yield of about nine percent. The enzyme showed its maximum absorption at 406 nm. The optimum pH and temperature for the enzyme activity were around pH 7.0 and 6$0^{\circ}C$, respectively. The catalase was found to be stable in the range of pH 4.0 to pH 8.3 and temperature 2$0^{\circ}C$ to 6$0^{\circ}C$. However, it lost nearly all of the activity by heating at 8$0^{\circ}C$ for 20 min. The activity was markedly inhibited by hydroxylamine, potassium cyanide and sodium azide.

  • PDF

Purification and Characterization of a Catalase from Photosynthetic Bacterium Rhodospirillum rubrum S1 Grown under Anaerobic Conditions

  • Kang Yoon-Suk;Lee Dong-Heon;Yoon Byoung-Jun;Oh Duck-Chul
    • Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.185-191
    • /
    • 2006
  • The photosynthetic bacterium, Rhodospirillum rubrum S1, when grown under anaerobic conditions, generated three different types of catalases. In this study, we purified and characterized the highest molecular weight catalase from the three catalases. The total specific catalase activity of the crude cell extracts was 88 U/mg. After the completion of the final purification step, the specific activity of the purified catalase was 1,256 U/mg. The purified catalase evidenced an estimated molecular mass of 318 kDa, consisting of four identical subunits, each of 79 kDa. The purified enzyme exhibited an apparent Km value of 30.4 mM and a Vmax of 2,564 U against hydrogen peroxide. The enzyme also exhibited a broad optimal pH $(5.0{\sim}9.0)$, and remained stable over a broad temperature range $(20^{\circ}C{\sim}60^{\circ}C)$. It maintained 90% activity against organic solvents (ethanol/chloroform) known hydroperoxidase inhibitors, and exhibited no detectable peroxidase activity. The catalase activity of the purified enzyme was reduced to 19 % of full activity as the result of the administration of 10 mM 3-amino-1,2,4-triazole, a heme-containing catalase inhibitor. Sodium cyanide, sodium azide, and hydroxylamine, all of which are known heme protein inhibitors, inhibited catalase activity by 50 % at concentrations of $11.5{\mu}M,\;0.52{\mu}M,\;and\;0.11{\mu}M$, respectively. In accordance with these findings, the enzyme was identified as a type of monofunctional catalase.

Commercial Production and Separation of Catalase Produced by Micrococcus sp.

  • Lee, Ho;Suh, Hyung-Joo;Yu, Hee-Jong;So, Sung;Oh, Sung-Hoon
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.1
    • /
    • pp.28-32
    • /
    • 2002
  • A Micrococcus sp. producing catalase was isolated from soil, and a commercial-scathe cultivation and purification of catalase were conducted. The maximum catalase activity was about 103 BU/mL obtained after 46 hr of cultivation in a 30 L fermenter containing 2% glucose, 2% peptone, 4% yeast extract, and 0.5% NaCl. Soybean sauce, CSL (corn steep liquor), and yeast extract were also studied as media substitutes in the media 30 L fermenter. The optimum medium components for the production catalase were found to be 2% glucose, 4% soybean sauce, and 16% CSL. In a 18 kL fermenter, the stationary phase in the cell growth and maximum catalase activity (112 BU/mL) were reached after 46 hr of cultivation, which was the same result as in the 30 L fermenter. The catalase activity was purified with over 17 folds in four steps with a 33.6% yield. From 104,250 mg of protein after cell lysis, 1,966 mg of the purified enzyme with a specific activity of 192.7 kBU/mg was obtained. The residual activity with the addition of 10% NaCl exhibited more than 100%. The use of just NaCl produced a higher residual activity than combination of bencol (benzyldimethyl ammoniumchloride) and PG (propyleneglycol).

Cloning and Characterization of Monofunctional Catalase from Photosynthetic Bacterium Rhodospirillum rubrum S1

  • Lee, Dong-Heon;Oh, Duck-Chul;Oh, You-Sung;Malinverni, Juliana C.;Kukor, Jerome J.;Kahng, Hyung-Yeel
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1460-1468
    • /
    • 2007
  • In this study, an approx. 2.5-kb gene fragment including the catalase gene from Rhodospirillum rubrum S1 was cloned and characterized. The determination of the complete nucleotide sequence revealed that the cloned DNA fragment was organized into three open reading frames, designated as ORF1, catalase, and ORF3 in that order. The catalase gene consisted of 1,455 nucleotides and 484 amino acids, including the initiation and stop codons, and was located 326 bp upstream in the opposite direction of ORF1. The catalase was overproduced in Escherichia coli UM255, a catalase-deficient mutant, and then purified for the biochemical characterization of the enzyme. The purified catalase had an estimated molecular mass of 189 kDa, consisting of four identical subunits of 61 kDa. The enzyme exhibited activity over a broad pH range from pH 5.0 to pH 11.0 and temperature range from $20^{\circ}C$ to $60^{\circ}C$C. The catalase activity was inhibited by 3-amino-1,2,4-triazole, cyanide, azide, and hydroxylamine. The enzyme's $K_m$ value and $V_{max}$ of the catalase for $H_2O_2$ were 21.8 mM and 39,960 U/mg, respectively. Spectrophotometric analysis revealed that the ratio of $A_{406}$ to $A_{280}$ for the catalase was 0.97, indicating the presence of a ferric component. The absorption spectrum of catalase-4 exhibited a Soret band at 406 nm, which is typical of a heme-containing catalase. Treatment of the enzyme with dithionite did not alter the spectral shape and revealed no peroxidase activity. The combined results of the gene sequence and biochemical characterization proved that the catalase cloned from strain S1 in this study was a typical monofunctional catalase, which differed from the other types of catalases found in strain S1.

Purification and Characterization of Bacteriocin Produced by Enterococcus sp. (Enterococcus sp.가 생산하는 Bacteriocin의 정제 및 특성에 관한 연구)

  • 정건섭;양은석;이국진;고현정;정병문
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.6
    • /
    • pp.523-528
    • /
    • 1998
  • We isolated microorganism secreting antimicrobial substance from tomato and identified as Enterococcus faecium. This substance was completely inactivated by pretense treatment and retained activity after catalase treatment. This result indicated that the antimicrobial activity of this substance was due to proteinaceous substance known as bacteriocin. The bacteriocin inhibited growth of Gram positive bacteria, such as Listeria monocytogenes, Leuconostoc mesenteroides, Lactobacillus plantarum, Streptococcus agalactiae, Streptococcus pyrogenes, and Gram negative bacteria, such as Pseudomonas aeruginosa. Purification of the bacteriocin was achieved by ethanol precipitation, ion exchange chromatography on CM Sepharose CL-6B, and gel filtration on Sephacryl S-100 HR. After these purification steps, the specific activity of the bacteriocin was increased 35.8 fold compared with culture broth. Purified bacteriocin was shown single band on SDS-PAGE and molecular weight was estimated 51 kDa. The residual activity of this bacteriocin was 3.3% at 10$0^{\circ}C$ for 60 min, and this bacteriocin was stable at pH 2~7.

  • PDF