Browse > Article

Purification and Characterization of a Catalase from Photosynthetic Bacterium Rhodospirillum rubrum S1 Grown under Anaerobic Conditions  

Kang Yoon-Suk (Department of Life Science, College of Natural Science, Cheju National University)
Lee Dong-Heon (Department of Life Science, College of Natural Science, Cheju National University)
Yoon Byoung-Jun (Department of Life Science, College of Natural Science, Cheju National University)
Oh Duck-Chul (Department of Life Science, College of Natural Science, Cheju National University)
Publication Information
Journal of Microbiology / v.44, no.2, 2006 , pp. 185-191 More about this Journal
Abstract
The photosynthetic bacterium, Rhodospirillum rubrum S1, when grown under anaerobic conditions, generated three different types of catalases. In this study, we purified and characterized the highest molecular weight catalase from the three catalases. The total specific catalase activity of the crude cell extracts was 88 U/mg. After the completion of the final purification step, the specific activity of the purified catalase was 1,256 U/mg. The purified catalase evidenced an estimated molecular mass of 318 kDa, consisting of four identical subunits, each of 79 kDa. The purified enzyme exhibited an apparent Km value of 30.4 mM and a Vmax of 2,564 U against hydrogen peroxide. The enzyme also exhibited a broad optimal pH $(5.0{\sim}9.0)$, and remained stable over a broad temperature range $(20^{\circ}C{\sim}60^{\circ}C)$. It maintained 90% activity against organic solvents (ethanol/chloroform) known hydroperoxidase inhibitors, and exhibited no detectable peroxidase activity. The catalase activity of the purified enzyme was reduced to 19 % of full activity as the result of the administration of 10 mM 3-amino-1,2,4-triazole, a heme-containing catalase inhibitor. Sodium cyanide, sodium azide, and hydroxylamine, all of which are known heme protein inhibitors, inhibited catalase activity by 50 % at concentrations of $11.5{\mu}M,\;0.52{\mu}M,\;and\;0.11{\mu}M$, respectively. In accordance with these findings, the enzyme was identified as a type of monofunctional catalase.
Keywords
catalase; photosynthetic bacterium; Rhodospirillum rubrum S1;
Citations & Related Records

Times Cited By Web Of Science : 8  (Related Records In Web of Science)
Times Cited By SCOPUS : 9
연도 인용수 순위
1 Laemmli, U.K. 1970. Cleavage of structural proteins during the asembly of the head of bacterophage T4. Nature 227, 680-685   DOI   ScienceOn
2 Levine, R. L., L. Mosoni, B. S. Berlett, and E. R. Stadtman. 1996. Methionine residues as endogenous antioxidants in proteins. Proc. Natl. Acad. Sci. USA 93, 15036-15040
3 Michan, S., F. Lledias, J. D. Baldwin, D. O. Natvig, and W. Hansberg. 2002. Regulation and oxidation of two large monofunctional catalases. Free Radic. Biol. Med. 33, 521-532   DOI   ScienceOn
4 Miller, C. D., Y. C. Kim, and A. J. Anderson. 1997. Cloning and mutational analysis of the gene for the stationary phase inducible catalase (cat c) from Pseudomonas putida. J. Bacteriol. 179, 5241-5245   DOI
5 Nadler, V., I. Goldberg, and A. Hochman. 1986. Comparative study of bacterial catalase. Biochim. Biophys. Acta 82, 234- 241
6 Smith, P. K., R. I. Krohn, G. T. Hermanson, A. K. Mallia, E. K. Gartner, N. M. Goeke, B. J. Olson, and D. C. Klenk, 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76-85   DOI   ScienceOn
7 Loewen, P. C. 1992. Regulation of bacterial catalase synthesis. p.97-115. In J.G. Scandalios (ed.). Molecular biology of free radical scavenging systems. Cold Spring Harbor Laboratory Press. Cold Spring Harbor. N.Y
8 Morris, J. G. 1980. Oxygen tolerance/intolerance of anaerobic bacteria. p.7-15. In G. Gottschalk. N. Penning, and H. Werner (ed.). Anaerobes and anaerobic infections. Proceedings of Symposia held at the XII International Congress of Microbiology in Munich. Gustav Fisher Verlag. Stuttgart. Germany
9 Hochman, A. and I. Goldberg. 1991. Purification and characterization of a catalase-peroxidase and a typical catalase from the bacterium Klebsiella pneumoniae. Biochim. Biophys. Acta 1077, 299-307   DOI   ScienceOn
10 Beers, Jr. R. F. and I. W. Sizer. 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195, 133-140
11 Switala, J. and P. C. Loewen. 2002. Diversity of properties among catalases. Arch. Biochem. Biophys. 401, 145-154   DOI   ScienceOn
12 Almiron, M., Link, A. J., Furlong, and D. R. Kolter. 1992. A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Gene. Dev. 6, 2646- 2654   DOI
13 Yumoto, I., Y. Fukumori, and T. Yamanaka. 1990. Purification and characterization of catalase from a facultative alkalophilic bacillus. J. Biochem. 108, 583-587   DOI
14 Bose, S. K., H. Gest., and J. G. Ormerod. 1962. Lightactivated hydrogenase activity in photosynthetic bacterium : A permeability phenomenon. J. Biol. Chem. 236, 13-14
15 Hicks, D. B. 1995. Purification of three catalase isoenzymes from facultatively alkaliphilic Bacillus firmus OF4. Biochem. Biophys. Acta. 1229, 347-355   DOI   ScienceOn
16 Terzebach, D. P. and M. Blaut. 1998. Purification and characterization of a catalase from the nonsulfur phototrophic bacterium Rhodobacter sphaeroides ATH 2.4.1 and its role in the oxidative stress response. Arch. Microbiol. 169, 503-508   DOI
17 Lim, H. K., Y. M. Kim, D. H. Lee, H. Y. Kahng, and D. C. Oh. 2001. Analysis of Catalases from photosynthetic bacterium Rhodospirillum rubrum S1. J. Microbiol. 39, 168-176
18 Ueda, M., H. Kinoshita, T. Yoshida, N. Kamashwa, M. Osumi, and A. Tanaka. 2003. Effect of catalase-specific inhibitor 3-amino-1,2,4-triazole on yeast peroxisomal catalase in vivo. FEMS Microbiol. Lett. 219. 93-98   DOI   ScienceOn
19 Finegold, S. M. and W. L. George. 1989. Anaerobic infections in humans. Academic Press. San Diego. Calif
20 Shonbaum, G. R. and B. Chance, 1976. Catalase. In 'The Enxzyme (2nd ed)' Boyer, P. D. Eds, Vol. XIII
21 Wayne, L. G. and G. A. Diaz. 1986. A double staining method for differentiating between two classes of mycobacterial catalase in polyacrylamid gels. Anal. Biochem. 157, 89-92   DOI   ScienceOn
22 Uffen, R. L. and R. S. Wolfe. 1970. Anaerobic growth of purple nonsulfur bacteria under dark conditions. J. Bacteriol. 104, 462-472
23 Hochman, A. and A. Shemesh. 1987. Purification and characterization of a catalase-peroxidase from the photosynthetic bacterium Rhodopseudomonas capsulata. J. Biol. Chem. 262, 6871-6876
24 Lee, I. J. and Y. N. Lee. 1995. Purification and characterization of Catalase-3 of Deinococcus radiophilus. J. Microbiol. 33, 239-243
25 Rocha, E. R. and C. J. Smith. 1997. Regulation of Bacteroides fragilis KatB mRNA by oxidative stress and carbon limitation. J. Bacteriol. 179, 7033-7039   DOI
26 Gutteridge, J. M. and B. Holliwell. 2000. Free radicals and antioxidants in the year 2000. A historical look to the future. Ann. N. Y. Acad. Sci. 899, 136-147
27 Loewen, P. C., M. G. Klotz, and D. J. Hassett. 2000. Catalasean 'Old' enzyme that continues to surprise us. 66, 76-82
28 Rocha, E. R. and C. J. Smith. 1995. Biochemical and genetic analyses of a catalase from the anaerobic bacterium Bacteroides fragilis. J. Bacteriol. 177, 3111-3119   DOI