• Title/Summary/Keyword: catadioptric

Search Result 34, Processing Time 0.029 seconds

Compact Catadioptric Wide Imaging with Secondary Planar Mirror

  • Ko, Young-Jun;Yi, Soo-Yeong
    • Current Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.329-335
    • /
    • 2019
  • Wide FOV imaging systems are important for acquiring rich visual information. A conventional catadioptric imaging system deploys a camera in front of a curved mirror to acquire a wide FOV image. This is a cumbersome setup and causes unnecessary occlusions in the acquired image. In order to reduce both the burden of the camera deployment and the occlusions in the images, this study uses a secondary planar mirror in the catadioptric imaging system. A compact design of the catadioptric imaging system and a condition for the position of the secondary planar mirror to satisfy the central imaging are presented. The image acquisition model of the catadioptric imaging system with a secondary planar mirror is discussed based on the principles of geometric optics in this study. As a backward mapping, the acquired image is restored to a distortion-free image in the experiments.

Catadioptric Omnidirectional Stereo Imaging System and Reconstruction of 3-dimensional Coordinates (Catadioptric 전방향 스테레오 영상시스템 및 3차원 좌표 복원)

  • Kim, Soon-Cheol;Yi, Soo-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4108-4114
    • /
    • 2015
  • An image acquisition by using an optical mirror is called as a catadioptric method. The catadioptric imaging method is generally used for acquisition of 360-degree all directional visual information in an image. An exemplar omnidirectional optical mirror is the bowl-shaped hyperbolic mirror. In this paper, a single camera omnidirectional stereo imaging method is studied with an additional concave lens. It is possible to obtain 3 dimensional coordinates of environmental objects from the omnidirectional stereo image by matching the stereo image having different view points. The omnidirectional stereo imaging system in this paper is cost-effective and relatively easy for correspondence matching because of consistent camera intrinsic parameters in the stereo image. The parameters of the imaging system are extracted through 3-step calibration and the performance for 3-dimensional coordinates reconstruction is verified through experiments in this paper. Measurable range of the proposed imaging system is also presented by depth-resolution analysis.

An Efficient Hardware Architecture of Coordinate Transformation for Panorama Unrolling of Catadioptric Omnidirectional Images

  • Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.15 no.1
    • /
    • pp.10-14
    • /
    • 2011
  • In this paper, we present an efficient hardware architecture of unrolling image mapper of catadioptric omnidirectional imaging systems. The catadioptric omnidirectional imaging systems generate images of 360 degrees of view and need to be transformed into panorama images in rectangular coordinate. In most application, it has to perform the panorama unrolling in real-time and at low-cost, especially for high-resolution images. The proposed hardware architecture adopts a software/hardware cooperative structure and employs several optimization schemes using look-up-table(LUT) of coordinate conversion. To avoid the on-line division operation caused by the coordinate transformation algorithm, the proposed architecture has the LUT which has pre-computed division factors. And then, the amount of memory used by the LUT is reduced to 1/4 by using symmetrical characteristic compared with the conventional architecture. Experimental results show that the proposed hardware architecture achieves an effective real-time performance and lower implementation cost, and it can be applied to other kinds of catadioptric omnidirectional imaging systems.

Range finding algorithm of equidistance stereo catadioptric mirror (등거리 스테레오 전방위 렌즈 영상에 대한 위치 측정 알고리즘)

  • Choi, Young-Ho
    • Journal of Internet Computing and Services
    • /
    • v.6 no.6
    • /
    • pp.149-161
    • /
    • 2005
  • Catadioptric mirrors are widely used in automatic surveillance system. The major drawback of catadioptric mirror is its unequal image resolution. Equidistance catadioptric mirror can be the solution to this problem. Even double panoramic structure can generate stereo images with single camera system. So two images obtained from double panoramic equidistance catadioptric mirror can be used in finding the depth and height values of object's points. But compared to the single catadioptric mirror. the image size of double panoramic system is relatively small. This leads to the severe accuracy problem in estimation. The exact axial alignment and the exact mount of mirror are the sources that can be avoided but the focal length variation is inevitable. In this paper, the effects of focal length variation on the computation of depth and height of object' point are explained and the effective focal length finding algorithm, using the assumption that the object's viewing angles are almost same in stereo images, is presented.

  • PDF

Design of a Catadioptric System with Corrected Color Aberration and Flat Petzval Curvature Using a Graphically Symmetric Method

  • Lim, Tae-Yeon;Park, Sung-Chan
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.324-331
    • /
    • 2018
  • This paper describes a symmetric method for determining a combination of element power and optical material to design a catadioptric system with corrected color aberration and flat Petzval curvature. To graphically obtain the solutions, a glass chart containing the Abbe number, the refractive index, and the optical power, which are closely related to these aberrations, is suggested. First, we recompose an optical system as a doublet of the specific lens and an equivalent single lens, and then locate both lenses on lines that are symmetric to each other on a glass chart, through changing the lens parameters effectively. Utilizing this method, an achromatic catadioptric system with flat Petzval curvature is obtained.

Parameter Estimation for Range Finding Algorithm of Equidistance Stereo Catadioptric Mirrors (등거리 스테레오 전방위 렌즈의 위치 측정 알고리듬을 위한 파라미터 측정에 관한 연구)

  • Choi, Young-Ho;Kang, Min-Goo;Zo, Moon-Shin
    • Journal of Internet Computing and Services
    • /
    • v.8 no.5
    • /
    • pp.117-123
    • /
    • 2007
  • Catadioptric mirrors are widely used in automatic surveillance system. The major drawback of catadioptric mirror is its unequal image resolution. Equidistance catadioptric mirrir can be the solution to this problem. The exact axial alignment and the exact mount of mirror are the sources that can be avoided but the focal length variation is inevitable. In this paper, the effects of focal length variation on the computation of depth and height of object' point are explained and the effective and simple focal length finding algorithm is presented. First two object's points are selected, and the counterparts on the other stereo image are to be found using MSE criterion. Using four pixel distance from the image center, the assumed focal length is calculated. If the obtained focal length is different from the exact focal length, 24mm, the focal length value is modified by the proposed method. The method is very simple and gives the comparable results with the earlier sophisticated method.

  • PDF

Optical Design of a Modified Catadioptric Omnidirectional Optical System for a Capsule Endoscope to Image Simultaneously Front and Side Views on a RGB/NIR CMOS Sensor (RGB/NIR CMOS 센서에서 정면 영상과 측면 영상을 동시에 결상하는 캡슐 내시경용 개선된 반사굴절식 전방위 광학계의 광학 설계)

  • Hong, Young-Gee;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.6
    • /
    • pp.286-295
    • /
    • 2021
  • A modified catadioptric omnidirectional optical system (MCOOS) using an RGB/NIR CMOS sensor is optically designed for a capsule endoscope with the front field of view (FOV) in visible light (RGB) and side FOV in visible and near-infrared (NIR) light. The front image is captured by the front imaging lens system of the MCOOS, which consists of an additional three lenses arranged behind the secondary mirror of the catadioptric omnidirectional optical system (COOS) and the imaging lens system of the COOS. The side image is properly formed by the COOS. The Nyquist frequencies of the sensor in the RGB and NIR spectra are 90 lp/mm and 180 lp/mm, respectively. The overall length of 12 mm, F-number of 3.5, and two half-angles of front and side half FOV of 70° and 50°-120° of the MCOOS are determined by the design specifications. As a result, a spatial frequency of 154 lp/mm at a modulation transfer function (MTF) of 0.3, a depth of focus (DOF) of -0.051-+0.052 mm, and a cumulative probability of tolerance (CPT) of 99% are obtained from the COOS. Also, the spatial frequency at MTF of 170 lp/mm, DOF of -0.035-0.051 mm, and CPT of 99.9% are attained from the front-imaging lens system of the optimized MCOOS.

A Design of Mid-wave Infrared Integral Catadioptric Optical System with Wide FOV

  • Yu, Lin Yao;Jia, Hong Guang;Wei, Qun;Jiang, Hu Hai;Zhang, Tian Yi;Wang, Chao
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.142-147
    • /
    • 2013
  • In order to deduce the difficulty of fixing the Ritchey-Chretien (R-C) dual reflective optical system and enhance the stability of the secondary mirror, a compact integral structure is presented here composed of two transmitting and two reflective aspheric surfaces. The four surfaces were manufactured from a single germanium lens and integrated together. The two reflective surfaces formed by coating the inner reflecting films were assembled in one lens. It makes the installation of the two mirrors easier and the structure of the secondary mirror more stable. A design of mid-wave infrared (MWIR) compact imaging system is presented with a spectral range chosen as $3.7-4.8{\mu}m$. The effective focal length is f=90 mm. The field of view (FOV) for the lens is $4.88^{\circ}$. It has good imaging capability with Modulation Transfer Function (MTF) of all field of view more than 0.55 close to the diffraction limitation. Outdoor experiments were carried out and it is shown that the integral catadioptric optical system performs well on imaging.

A Miniaturized Catadioptric Laser-Irradiation-Precision Test System

  • Liu, Huan;Sun, Hao;Wang, Chunyan
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.164-172
    • /
    • 2021
  • In this paper a catadioptric laser-irradiation-precision test system is designed, to achieve a high-precision laser-irradiation-accuracy test. In this system, we adopt the method of imaging the entire target surface at a certain distance to realize the measurement of laser-irradiation precision. The method possesses the advantages of convenient operation, high sensitivity, and good stability. To meet the test accuracy requirement of 100 mm/km (0.01%), the coma, field curvature, and distortion over the entire field of view should be eliminated from the optical system's design. Taking into account the whole length of the tube and the influence of stray light on the structure type, a catadioptric system with a hood added near the primary imaging surface is designed. After optimization using the ZEMAX software, the modulation transfer function (MTF) of the designed optical system is 0.6 at 30 lp/mm, the full-field-of-view distortion is better than 0.18%, and the energy concentration in the 10-㎛-radius surrounding circle reaches about 90%. The illumination-accuracy test results show that the measurement accuracy of the radiation hit rate is better than 50 mm when the test distance is 1 km, which is better than the requirement of 100 mm/km for the laser-irradiation-accuracy test.