• 제목/요약/키워드: casting

검색결과 3,447건 처리시간 0.027초

R/P 마스터모델을 활용한 정밀주조 공정기술의 개발 (Development of Investment Casting Technique using R/P Master Model)

  • 임용관;정성일;정해도
    • 한국정밀공학회지
    • /
    • 제16권6호
    • /
    • pp.52-57
    • /
    • 1999
  • Funtional metal prototypes are often required in numerous industrial applications. These components are typically needed in the early stage of a project to determine form, fit and function. Recent R/P(Rapid Prototyping) part are made of soft materials such as plastics, wax, paper, these master models cannot be employed durable test in real harsh working environment. Parts by direct metal rapid tooling method, such as laser sintering, by now are hard to get net shape, pores of the green parts of powder casting method must be infiltrated to get proper strength as tool, and new type of 3D direct tooling system combining fabrication welding arc and cutting process is reported by song etc. But a system which can build directly 3D parts of high performance functional material as metal part would need long period of system development, massive investment and other serious obstacles, such as patent. In this paper, through the rapid tooling process as silicon rubber molding using R/P master model, and fabricate wax pattern in that silicon rubber mold using vacuum casting method, then we tranlsated the wax patterns to numerous metal prototypes by new investment casting process combined conventional investment casting with rapid pototyping & rapid tooling process. with this wax-injection-mold-free investment casting, we developed new investment casting process of fabricating numerous functional metal prototypes from one master model, combined 3-D CAD, R/P and conventional investment casting and tried to expect net shape measuring total dimension shrinkage from R/P part to metal part.

  • PDF

수평식 연속주조법에 의한 순Al 및 Al-5wt%Si 합금 주괴제조시 주조변수에 관한 고찰 (A Study on the Casting Variables in the Horizontal Continuous Casting of Pure Al and Al-5wt%Si Alloy Rods)

  • 김상동;조형호;김명한
    • 한국주조공학회지
    • /
    • 제13권6호
    • /
    • pp.532-539
    • /
    • 1993
  • The effect of casting variables for making pure Al and Al-5wt%Si alloy rods free from any surface and inside defects was studied by adopting the horizontal continuous casting method with heated mold. The rods were cast under the casting conditions such as the mold temperature of $670{\sim}690^{\circ}C$, water flow rate of $0.2{\sim}0.6{\ell}/min$, and rod diameter of $4{\sim}8mm$, when the melt temperature and mold to cooler distance was fixed at $700^{\circ}C$ and 20mm, respectively. The results represented that the casting speed for good quality rod increased as the water flow rate increased, whereas, the casting speed decreased as the rod diameter or mold temperature increased. The statistical analysis of $2^3$ factorial design was also applied and the results represented that the averaged optimum casting speed for pure Al(302mm/min) was higher than that of Al-5wt%Si alloy(273mm/min) resulting from the difference of superheat applied. The effect of rod diameter on the optimum casting speed was the highest for pure Al as well as Al-5wt%Si alloy. The effect of water flow rate and mold temperature on the optimum casting speed was in decreasing order.

  • PDF

가압-진공 하이브리드 주입성형에 의한 알루미나의 균질 성형 (Homogeneous Shape Forming of Alumina by Pressure-Vacuum Hybrid Slip Casting)

  • 조경식;송인범;김재
    • 한국세라믹학회지
    • /
    • 제49권6호
    • /
    • pp.592-600
    • /
    • 2012
  • Conventional methods for preparing ceramic bodies, such as cold isostatic pressing, gypsum-mold slip casting, and filter pressing are not completely suitable for fabricating large and thick ceramic plates owing to disadvantages of these processes, such as the high cost of the equipment, the formation of density gradients, and differential shrinkage during drying. These problems can be avoided by employing a pressure-vacuum hybrid slip casting approach that considers not only by the compression of the aqueous slip in the casting room (pressure slip casting) but also the vacuum sucking of the dispersion medium (water) around the mold (vacuum slip casting). We prepared the alumina formed bodies by means of pressure-vacuum hybrid slip casting with stepwise pressure loading up to 0.5 MPa using a slip consisting of 40 vol% solid, 0.6 wt% APC, 1 wt% PEG, and 1 wt% PVA. After drying the green body at $30^{\circ}C$ and 80% RH, the green density of the alumina bodies was about 56% RD. The sintered density of an alumina plate created by means of sintering at $1650^{\circ}C$ for 4 h exceeded 99.8%.This method enabled us to fabricate a $110{\times}110{\times}20$ mm alumina plate without cracks and with a homogeneous density, thus demonstrating the possibility of extending the method to the fabrication of other ceramic products.

주조공정 설비에 대한 실시간 모니터링을 통한 불량예측에 대한 연구 (A Study on Defect Prediction through Real-time Monitoring of Die-Casting Process Equipment)

  • 박철순;김흥섭
    • 산업경영시스템학회지
    • /
    • 제45권4호
    • /
    • pp.157-166
    • /
    • 2022
  • In the case of a die-casting process, defects that are difficult to confirm by visual inspection, such as shrinkage bubbles, may occur due to an error in maintaining a vacuum state. Since these casting defects are discovered during post-processing operations such as heat treatment or finishing work, they cannot be taken in advance at the casting time, which can cause a large number of defects. In this study, we propose an approach that can predict the occurrence of casting defects by defect type using machine learning technology based on casting parameter data collected from equipment in the die casting process in real time. Die-casting parameter data can basically be collected through the casting equipment controller. In order to perform classification analysis for predicting defects by defect type, labeling of casting parameters must be performed. In this study, first, the defective data set is separated by performing the primary clustering based on the total defect rate obtained during the post-processing. Second, the secondary cluster analysis is performed using the defect rate by type for the separated defect data set, and the labeling task is performed by defect type using the cluster analysis result. Finally, a classification learning model is created by collecting the entire labeled data set, and a real-time monitoring system for defect prediction using LabView and Python was implemented. When a defect is predicted, notification is performed so that the operator can cope with it, such as displaying on the monitoring screen and alarm notification.

금형주조기를 이용한 알루미늄 합금 금형의 수치해석적 열변형 해석과 실험에 관한 연구 (Numerical and Experimental Studies on Thermal Strain Analysis of Al Alloy Casting Mold using Metal Foundry)

  • 오율권;김용범;윤희성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2050-2054
    • /
    • 2007
  • This study numerically and experimentally investigated on thermal strain analysis of aluminum alloy casting mold using metal foundry. To predict the numerical result of thermal strain in Al alloy casting mold during the cooling process, it is performed the investigation of temperature distribution, stress and displacement based on the physical properties of Al alloy. In results of this study, Al alloy casting mold represented rapidly cooling graph during initial 20minutes after beginning cooling process, therefore value of stress and displacement is rapidly changed during initial 20minutes after beginning cooling process. In addition to, temperature distribution obtained by experiment confirmed corresponding pattern then compared numerical analysis with experiment. These results are distribute to make the effective and the high precision casting mold.

  • PDF

일방향성 배열을 가진 Sic whisker에 의해 강화된 알루미나 복합체의 Whisker orientation 에 따른 마모마찰 특성 (Tribological Behavior of the Alumina Reinforced with Unidirectionally Oriented SiC whiskers depending on whisker orientation)

  • 간태석;한병동;임대순
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제29회 춘계학술대회
    • /
    • pp.220-224
    • /
    • 1999
  • Sliding wear test was employed to determine the effect of whisker content and orientation on the firiction and wear behavior of SiC whisker reinforced alumina. Composites containing unidirectionally oriented whiskers were prepared by a modified tape casting followed by lamination, binder removal and hot pressing in order to align the whiskers in the tape casting direction. Wear coefficients on three directions were measured; parallel and normal to the tape casting direction on the tape casting surface and normal to lamination direction on surfnce normal to the tape casting direction. In the effect of whisker orientation, the highest wear rate was obtained in the direction parallel tape casting direction and the lowest in the direction normal to lamination direction at all temperatures. Silicon oxide layer amoothing the surface was detected by energy dispersive X-ray analysis on the worn surface.

  • PDF

주조방안 자동설계 프레임워크 구축 (A Development of Casting Design Automation Framework)

  • 조원철;김성민;;손정우;이수홍
    • 한국CDE학회논문집
    • /
    • 제17권2호
    • /
    • pp.91-96
    • /
    • 2012
  • Use of casting simulation software, analyzing the reason for defect became easy. However, to create a practical solution, experienced casting expert's knowledge is always indispensable. In this study, we develop casting design automation system and the algorithm based on casting expert's knowledge, so that faster and more accurate design is enabled. Especially, to generate runner which can be shaped in numerous ways, we suggest the 'nexus' method to shape runner system.

분말야금공법으로 제조된 CAD/CAM용 Co-Cr-Mo 합금의 미세조직 및 기계적 특성 (Microstructure and Mechanical Properties of Co-Cr-Mo alloy for CAD/CAM Applications fabricated by Powder Metallurgy Process)

  • 차성수
    • 대한치과기공학회지
    • /
    • 제37권4호
    • /
    • pp.235-242
    • /
    • 2015
  • Purpose: The aims of this study are compare with microstructure and mechanical properties of Co-Cr-Mo alloys fabricated by powder metallurgy(P/M) process and casting process respectively. Methods: Microstructure and micro-hardness were tested by SEM and Vickers Hardness Tester. The sintered specimen was produced by furnace-coolling after sintering, however the casting specimen were produced thru air-cooling and water-cooling after the casting. For observation of phase transformation during sintering, DSC analyzing was carried out. Results: Mean pore size of sintered Co-Cr-Mo alloy was $4.32{\mu}m$ and that of casting alloy was $1.63{\mu}m$. Hardness of sintered alloy was lower than water-quenched casting alloy. Conclusion: Proper sintering temperature of Co-Cr-Mo alloy was above $1,200^{\circ}C$ and pore size of casting specimen were finer than sintered specimen, but hardness were similar.

Design of Shock Absorber Housing Using Aluminum Vacuum Die Casting Technology

  • Jin, Chul-Kyu;Kang, Chung-Gil
    • 한국산업융합학회 논문집
    • /
    • 제21권1호
    • /
    • pp.1-8
    • /
    • 2018
  • The purpose of this study is to develop a high-strength, high-toughness, thin-walled aluminum shock absorber housing product by applying a high vacuum die casting method to improve internal gas defect and formability. The analysis program dedicated for the casting was used because it was too costly and time-consuming to adopt the gating system design. The final casting plan was designed based on the flow pattern of the material filled into the mold and the result of air pressure and air pocket after the material was completely filled in the mold. Gaty shape was designed as a split type. The runner was designed to have the same shape as the initial inlet curve of the cavity, and the flow of the molten metal was prevented from turbulent flow. The most favorable results were obtained when the injection speed was $V_2=4.0m/s$. Defects on pores were reduced by applying high vacuum level inside the mold.

슬랩법을 이용한 쌍롤식 박판주조 공정의 열간 압연 해석 (An Analysis of Hot-Rolling in the Twin-Roll Strip Casting Process by using the Slab Method)

  • 심현보
    • 소성∙가공
    • /
    • 제3권1호
    • /
    • pp.63-83
    • /
    • 1994
  • In this paper, the slab method have been applied to investigate the strip casting process in which hot coil is produced from molten steel directly. In the twin roll strip casting process, molten steel supplied by the nozzle cools and solidifies due to the heat extraction effect of the rolls and hot rolling of the solidified shell takes place simultaneously. The analysis of hot rolling has been carried out by using the existing results of solidification analysis for the twin roll strip casting process. The current slab method provides basic design data such as roll separation force, rolling torque, rolling power as well as end dam separation force which are required to design strip caster. The effect of friction on the basic process parameters are investigated also. It is shown that the use of appropriate friction coefficient is important and that the characteristics of hot rolling in the twin-roll strip casting process is quite different from the conventional hot rolling processes.

  • PDF