• Title/Summary/Keyword: cast materials

Search Result 983, Processing Time 0.029 seconds

Effect of Ethanolamines on Corrosion Inhibition of Ductile Cast Iron in Nitrite Containing Solutions

  • Kim, K.T.;Chang, H.Y.;Lim, B.T.;Park, H.B.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.171-181
    • /
    • 2016
  • In this work, synergistic corrosion inhibition effect of nitrite and 3 kinds of ethanolamines on ductile cast iron using chemical and electrochemical methods was evaluated. This work attempts to clarify the synergistic effect of nitrite and ethanolamines. The effects of single addition of TEA, DEA, and MEA, and mixed addition of nitrite plus TEA, DEA or MEA on the corrosion inhibition of ductile cast iron in a tap water were evaluated. A huge amount of single addition of ethanolamine was needed. However, the synergistic effect by mixed addition was observed regardless of the combination of nitrite and triethanolamines, but their effects increased in a series of MEA + nitrite > DEA + nitrite > TEA + nitrite. This tendency of synergistic effect was attributed to the film properties and polar effect; TEA addition couldn't form the film showing high film resistance and semiconductive properties, but DEA or MEA could build the film having relatively high film resistance and n-type semiconductive properties. Moreover, it can be explained that this behaviour was closely related to electron attractive group within the ethanolamines, and thus corrosion inhibition power depends upon the number of the electron attractive group of MEA, DEA, and TEA.

Effects of Sr Additions on the Interfacial Reaction Layers Formed between Liquid Al-Si-Cu Alloy and Cast Iron

  • Kyoung-Min Min;Je-Sik Shin;Jeong-Min Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.9
    • /
    • pp.353-359
    • /
    • 2023
  • This study investigated the growth behavior and characteristics of compounds formed at the interface between a liquid Al-Si-Cu alloy and solid cast iron. Through microstructural analyses, it was observed that various AlFe and AlFeSi phases are formed at the interface, and the relative proportion of each phase changes when small amounts of strontium are added to the Al alloy. The results of the microstructural analysis indicate that the primary phases of the interfacial compounds in the Al-Si-Cu base alloy are Al8Fe2Si and Al4.5FeSi. However, in the Sr-added alloys, significant amounts of binary AlFe intermetallic compounds such as Al5Fe2 and Al13Fe4 formed, in addition to the AlFeSi phases. The inclusion of Sr has a slight diminishing effect on the rate at which the interfacial compounds layer thickens during the time the liquid Al alloy is in contact with the cast iron. The study also discusses the nano-indentation hardness and micro-hardness of the interfacial phases.

The Effect of Metal Fibers on the Tribology of Automotive Friction Materials (마찰재에 함유된 금속섬유와 마찰 특성의 연관관계)

  • Ko, Kil-Ju;Cho, Min-Hyung;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.267-275
    • /
    • 2001
  • Friction and wear properties of brake friction materials containing different metal fibers (Al, Cu or Steel fibers) were investigated. Based on a simple experimental formulation, friction materials with the same amount of metal fibers were tested using a pad-on-disk type friction tester. Two different materials (gray cast iron and aluminum metal matrix composite (MMC)) were used for disks rubbing against the friction materials. Results front ambient temperature tests revealed that the friction material containing Cu fibers sliding against gray cast iron disk showed a distinct negative $\mu$-v (friction coefficient vs. sliding velocity) relation implying possible stick-slip generation at low speeds. The negative $\mu$- v relation was not observed when the Cu-containing friction materials were rubbed against the Al-MMC counter surface. Elevated temperature tests showed that the friction level and the intensity of friction force oscillation were strongly affected by the thermal conductivity and melting temperature of metallic ingredients of the friction couple. Friction materials slid against cast iron disks exhibited higher friction coefficients than Al-MMC (metal matrix composite) disks during high temperature tests. On the other hand, high temperature test results suggested that copper fibers in the friction material improved fade resistance and that steel fibers were not compatible with Al-MMC disks showing severe material transfer and erratic friction behavior during sliding at elevated temperatures.

Evaluation of Nodularity in Ductile Cast Iron by Image Analysis (화상분석에 의한 구상흑연주철의 구상화율 판정)

  • Joo, Dae-Heon;Park, Joo-Seung;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.21 no.3
    • /
    • pp.198-203
    • /
    • 2001
  • In determining properties of ductile cast iron, it is well known that nodularity plays a significant role. Therefore, the national and/or international standards for ductile cast iron such as KS, ISO, ASTM and JIS have specified some methods for evaluating it. However, most of standards have not recommended the methods using image analyzer which is known as an objective analyzing tool for evaluating microstructure. In this study, a reliable method for evaluating nodularity by image analyzing method was proposed, and the result was compared with that from the common counting method proposed in KS D 4302-1999. It was found that there was a reasonable relationship in nodularities measured by these two methods.

  • PDF

Effect of the Microstructure of Gray Cast Iron Disk on Friction Characteristics (자동차용 브레이크 로터의 재료로 사용되는 회주철의 미세구조에 따른 마찰특성에 관한 연구)

  • Cho, Min-Hyung;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.240-246
    • /
    • 1999
  • The effect of microstructure of gray cast iron disk was investigated by using a pad-on-disk type friction tester. Three different rotors with different microstructures were studied in this work. They showed a pearlitic matrix, a ferritic matrix, and a martensitic structure, respectively. All of them have graphite flakes in common. Drag tests at different pressure and speed conditions were carried out to study friction stability, temperature rise during drags. The rotor containing pearlitic matrix showed lower values of friction coefficient, small amount of temperature rise, and less fading. The results showed that gray cast iron disk containing pearlitic matrix has good friction characteristics.

  • PDF

Microstructure and Properties of High Strength High Ductility Al-Mg-Zn Casting Alloy (고강도 고인성 Al-Mg-Zn 주조합금의 미세조직 및 특성)

  • Kim, Jeong-Min;Ha, Tae-Hyung
    • Journal of Korea Foundry Society
    • /
    • v.36 no.6
    • /
    • pp.181-186
    • /
    • 2016
  • The typical microstructure of Al-5%Mg-2%Zn cast alloy mainly consists of an aluminum matrix with a small amount of AlMgZn 2nd phase. The secondary dendrite arm spacing and the grain size of the cast alloy tend to be inversely proportional to the section thickness of casting; however, the tensile properties cannot be said to be clearly related to the cast microstructure. After T6 heat treatment, the tensile strength of the alloy was enhanced significantly. TEM analysis results show that very fine AlMgZn precipitates were formed after the heat treatment. The corrosion resistance, measured according to the corrosion potential, was found to increase slightly after the conducting of heat treatment.

Friction Welding of Spheroidal Graphite Cast iron and 2024 Aluminium Alloys using Insert Metal (삽입금속을 사용한 구상흑연주철과 2024 알미늄합금의 마찰압접에 관한 연구)

  • Kim, Chang-Gyu;Kim, Chi-Ok;Sim, Sung-Bo;Kim, Kwang-Ill
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.283-288
    • /
    • 2002
  • This study accompanied with the friction welding of a spheroidal graphite cast iron bar and 2024 Aluminium alloy bar with A1050 insert metal and investigated between conditions of friction welding faces and welded joint strength. This principal results of the experimental investigation could be summarized as follows: If the optimum friction welding is selected, the aspect of the spheroidal graphite cast iron and 2024 Aluminium could be welded with a pure Aluminium insert metal.

  • PDF

Control of Abnormal graphite Structure in Heavy Section Ductile Cast Iron (후육 구상흑연주철의 이상흑연 제어)

  • Lee, Sang-Mok;Shin, Ho-Chul;Shin, Je-Sik;Moon, Byung-Moon
    • Journal of Korea Foundry Society
    • /
    • v.25 no.1
    • /
    • pp.40-50
    • /
    • 2005
  • A series of heavy section ductile cast iron ingots with the cube length of 250mm were systematically investigated as functions of casting parameters of sand casting. Abnormal graphite formation was specially observed with the variation of Si content and Bi or Sb addition. Effects of chilling during casting and adaptation of riserless system were also examined, and proved to be effective for the prevention of both shrinkage and abnormal graphite such as chunky one. The formation of chunky graphite was effectively prevented by low Si content despite the promotion of pearlite matrix structure. The ferritic matrix was encouraged to form by high Si content and chunky graphite formation was effectively suppressed by the addition of Bi and Sb. Bi addition, however, was not good enough to control the microstructure owing to the sensitive cooling rate dependent inoculation behavior and relative low ability of nodulization. Sb addition, on the other hand, was proved to be effective for the microstructural control and enhancement of various mechanical properties such as strength, elongation, and impact energy. It may be suggested that optimized casting parameters should be applied to produce heavy section ductile cast iron with reliability.

Microstructure and Wear Properties in an Engine Oil Environment of Extruded Hyper-eutectic Al-15wt.%Si Alloy and Gray Cast Iron (과공정 Al-15wt.%Si 압출재와 회주철의 미세조직 및 엔진 오일 환경에서의 마모 특성)

  • Kang, Y.J.;Kim, J.H.;Hwang, J.I.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.27 no.6
    • /
    • pp.339-346
    • /
    • 2018
  • This study investigated the microstructure and wear properties of extruded hyper-eutectic Al-Si (15wt.%) alloy in an engine oil environment. The wear mechanism of the material was also analyzed and compared to conventional gray cast iron. In microstructural observation results of Al-15wt.%Si alloy, primary Si phase ($45.3{\mu}m$) and eutectic Si phase ($3.1{\mu}m$) were found in the matrix, and the precipitations of $Mg_2Si({\beta}^{\prime})$, $Al_2Cu({\theta}^{\prime})$ and $Al_6(Mn,Fe)$ were also detected. In the case of gray cast iron, ferrite and pearlite were observed. It was also observed that flake graphite ($20-130{\mu}m$) were randomly distributed. Wear rates were lower in the Al-Si alloy as compared to those of gray cast iron in all load conditions, confirming the outstanding wear resistance of Al-15wt.%Si alloy in engine oil environment. In the $4kg_f$ condition, the wear rate of gray cast iron was $6.0{\times}10^{-5}$ and that of Al-Si measured $0.8{\times}10^{-5}$. The microstructures after wear of the two materials were analyzed using scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). The primary Si and eutectic Si of Al-Si alloy effectively mitigated the abrasive wear, and the Al matrix effectively endured to accept a significant amount of plastic deformation caused by wear.