DOI QR코드

DOI QR Code

Effect of Ethanolamines on Corrosion Inhibition of Ductile Cast Iron in Nitrite Containing Solutions

  • Kim, K.T. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University) ;
  • Chang, H.Y. (Power Engineering Research Institute, KEPCO Engineering & Construction Company) ;
  • Lim, B.T. (Power Engineering Research Institute, KEPCO Engineering & Construction Company) ;
  • Park, H.B. (Power Engineering Research Institute, KEPCO Engineering & Construction Company) ;
  • Kim, Y.S. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University)
  • Received : 2016.08.20
  • Accepted : 2016.08.26
  • Published : 2016.08.31

Abstract

In this work, synergistic corrosion inhibition effect of nitrite and 3 kinds of ethanolamines on ductile cast iron using chemical and electrochemical methods was evaluated. This work attempts to clarify the synergistic effect of nitrite and ethanolamines. The effects of single addition of TEA, DEA, and MEA, and mixed addition of nitrite plus TEA, DEA or MEA on the corrosion inhibition of ductile cast iron in a tap water were evaluated. A huge amount of single addition of ethanolamine was needed. However, the synergistic effect by mixed addition was observed regardless of the combination of nitrite and triethanolamines, but their effects increased in a series of MEA + nitrite > DEA + nitrite > TEA + nitrite. This tendency of synergistic effect was attributed to the film properties and polar effect; TEA addition couldn't form the film showing high film resistance and semiconductive properties, but DEA or MEA could build the film having relatively high film resistance and n-type semiconductive properties. Moreover, it can be explained that this behaviour was closely related to electron attractive group within the ethanolamines, and thus corrosion inhibition power depends upon the number of the electron attractive group of MEA, DEA, and TEA.

Keywords

References

  1. B. N. Popov, Corrosion Engineering-Principles and solved problems, p. 583, Elsevier Publication, Waltham, USA (2015).
  2. S. W. Dean Jr., R. Dervy, G. T. Vondembussche, Mater. Performance, 20, 47 (1981).
  3. L. Wang, Corros. Sci., 43, 2281 (2001). https://doi.org/10.1016/S0010-938X(01)00036-1
  4. M. A. Quraishi, R. Sadar, Corrosion, 58, 748 (2002). https://doi.org/10.5006/1.3277657
  5. F. Bentiss, M. Lebrini, H. Vezin, M. Lagrenee, Mater. Chem. Phys., 87, 18 (2004). https://doi.org/10.1016/j.matchemphys.2004.05.040
  6. E. A. Noor, Corros. Sci., 47, 33 (2004).
  7. G. Trabanelli, Corrosion Inhibitors, F. Mansfield ed., p. 28, Marcel Dekker, New York (1970).
  8. M. Cohen, J. Electrochem. Soc., 93, 26 (1948). https://doi.org/10.1149/1.2773786
  9. R. Pyke and M. Cohen, J. Electrochem. Soc., 93, 63 (1948). https://doi.org/10.1149/1.2773792
  10. M. Cohen, R. Pyke, and P. Marier, J. Electrochem. Soc., 96, 254 (1949). https://doi.org/10.1149/1.2776788
  11. S. M and H. H. Uhlig, J. Electrochem. Soc., 111, 156 (1964). https://doi.org/10.1149/1.2426075
  12. W. D. Robertson, J. Electrochem. Soc., 98, 94 (1951). https://doi.org/10.1149/1.2778118
  13. M. J. Pryor and M. Cohen, J. Electrochem. Soc., 100, 203 (1953). https://doi.org/10.1149/1.2781106
  14. R. Mehra and A. Soni, Indian J. Eng. Mater. S., 9, 141 (2002).
  15. K. T. Kim, H. W. Kim, H. Y. Chang, B. T. Lim, H. B. Park, and Y. S. Kim, Adv. Mate. Sci. Eng., 2015, 408138 (2015).
  16. T. W. Shon and B. C. Min, Hongdea Nonch'ong, 19, 527 (1987).
  17. I. Carrillo, B. Valdez, R. Zlatev, M. Stoytcheva, M. Carrillo, R. BaBler, Int. J. Electrochem. Sc., 7, 8688 (2012).
  18. J. O. Okeniyi, Abimbola Patricia Idowu Popoola, Cleophas Akintoye Loto, Olugbenga Adeshola Omotosho, Stanley Okechukwu Okpala, and Idemudia Joshua Ambrose, Adv. Mater. Sci. Eng., 2015, 540395 (2015).
  19. A. M. Ridhwan, A.A. Rahim, A.M. Shah, Int. J. Electrochem. Sc., 7, 8091 (2012).
  20. M. Vishnudevan, Iran. J. Mater. Sci. Eng., 9, 17 (2012).
  21. K. T. Kim, H. Y. Chang, B. T. Lim, H. B. Park, and Y. S. Kim, Adv. Mater. Sci. Eng., 2016, 4935602 (2016).
  22. KS D4311 Ductile Iron Pipe, KATS (2010).
  23. D. D. Macdonald, J. Electrochem. Soc., 139, 3434 (1992). https://doi.org/10.1149/1.2069096
  24. E. McCafferty, Introduction to Corrosion Science, p. 357, Springer, New York (2010).
  25. M. R. Singh, K. Bhrara, G. Singh, Port. Electrochim. Acta., 26, 479 (2008).
  26. V. Garcia-Arriaga, J. Alvarez-Ramirez, M. Amaya, E. Sosa, Corros. Sci., 52, 2268 (2010). https://doi.org/10.1016/j.corsci.2010.03.016

Cited by

  1. Synergistic Effect of Molybdate and Monoethanolamine on Corrosion Inhibition of Ductile Cast Iron in Tap Water vol.16, pp.1, 2016, https://doi.org/10.14773/cst.2017.16.1.31
  2. Synergistic Inhibition of Carbon Steel Corrosion by Inhibitor-Blends in Chloride - Containing Simulated Cooling Water vol.16, pp.3, 2016, https://doi.org/10.14773/cst.2017.16.3.91
  3. The Effect of Tungstate and Ethanolamines Added in Tap Water on Corrosion Inhibition of Ductile Cast Iron Pipe for Nuclear Power Plants vol.10, pp.12, 2020, https://doi.org/10.3390/met10121597
  4. Effect of Chloride Ions Concentrations to Breakdown the Passive Film on Rebar Surface Exposed to L-Arginine Containing Pore Solution vol.14, pp.19, 2021, https://doi.org/10.3390/ma14195693