• 제목/요약/키워드: cast aluminum alloy

검색결과 121건 처리시간 0.026초

자동차 경량화를 위한 다이캐스팅용 알루미늄합금 브레이크 페달의 강도해석 (Strength Analysis of Die-cast Aluminum-alloy Brake Pedals for use in Lightweight Cars)

  • 조승현;장준영
    • 한국생산제조학회지
    • /
    • 제25권2호
    • /
    • pp.138-142
    • /
    • 2016
  • In this study, a strength analysis was performed to assess die-cast aluminum alloy brake pedals as an improved alternative to wrought alloys. Aluminum brake pedal shapes are considered to be suitable for the die-casting process. The strength criterion of Volvo trucks was used as the criterion for the pedal strength. The results of this analysis showed that the frame thickness of the aluminum brake pedal must be increased from 12 mm to 18 mm to have a strength superior to that of a steel brake pedal. Additionally, the stress and weight of the aluminum brake pedal were found to be approximately 24% and 26% lower than those of the steel brake pedal, respectively. Mounting tests and strength assessments verified that the proposed die-cast aluminum alloy brake pedal demonstrated sufficient strength.

자동차휠용 A356 알루미늄 합금의 주조조직이 피로특성에 미치는 영향 (Effect of Cast Microstructure on Fatigue Behaviors of A356 Aluminum Alloy for Automotive Wheel)

  • 송전영;박중철;안용식
    • 한국주조공학회지
    • /
    • 제30권1호
    • /
    • pp.46-51
    • /
    • 2010
  • Recently, automotive industry is attempting to replace steels for automotive parts with light-weight alloys such as aluminum alloy, because of the growing environmental regulations governing exhaust gas and the engine effectiveness of a vehicle. The low cycle fatigue (LCF) and high cycle fatigue (HCF) properties as well as the microstructure and tensile property were investigated on the low pressure cast A356 aluminum alloy wheel, which was followed by T6 heat treatment. The cast microstructure of the alloy influenced significantly on the low cycle and high cycle fatigue behaviors. The rim part of cast aluminum alloy wheel showed higher low cycle and high cycle fatigue strength compared with the spoke part, which should be caused by higher cooling rate of rim part. The spoke part of the wheel showed coarser dendrite arm spacing (DAS) and wide eutectic zone in the microstructure, which resulted in the partial brittle fracture and lower fatigue life time.

고압 다이캐스팅용 알루미늄 합금의 열전도성 및 주조성에 미치는 첨가원소의 영향 (Effect of Alloying Elements on the Thermal Conductivity and Casting Characteristics of Aluminum Alloys in High Pressure Die Casting)

  • 김철우;김영찬;김정한;조재익;오민석
    • 대한금속재료학회지
    • /
    • 제56권11호
    • /
    • pp.805-812
    • /
    • 2018
  • High pressure die casting is one of the precision casting methods. It is highly productivity and suitable for manufacturing components with complex shapes and accurate dimensions. Recently, there has been increasing demand for efficient heat dissipation components, to control the heat generated by devices, which directly affects the efficiency and life of the product. Die cast aluminum alloys with high thermal conductivity are especially needed for this application. In this study, the influence of elements added to the die cast aluminum alloy on its thermal conductivity was evaluated. The results showed that Mn remarkably deteriorated the thermal conductivity of the aluminum alloy. When Cu content was increased, the tensile strength of cast aluminum alloy increased, showing 1 wt% of Cu ensured the minimum mechanical properties of the cast aluminum. As Si content increased, the flow length of the alloy proportionally increased. The flow length of aluminum alloy containing 2 wt% Si was about 85% of that of the ALDC12 alloy. A heat dissipation component was successfully fabricated using an optimized composition of Al-1 wt%Cu-0.6 wt%Fe-2 wt%Si die casting alloy without surface cracks, which were turned out as intergranular cracking originated from the solidification contraction of the alloy with Si composition lower than 2 wt%.

주조된 AI 합금의 기계적 성질에 미치는 HIP의 영향 (The Effect of Hot Isostatic Pressing on Mechanical Properties of Cast Aluminum Alloy)

  • 김기태;양훈철;최재윤
    • 대한기계학회논문집A
    • /
    • 제26권3호
    • /
    • pp.461-470
    • /
    • 2002
  • The present paper investigates the effect of hot isostatic pressing (HIPing) on mechanical properties, e.g., tensile strength, ductility and impact absorption energy of sand and die casted aluminum alloys. After HIPing at various temperatures and pressure conditions, uniaxial tensile test and Izod impact test of the samples were carried out. The experimental results showed improvements in uniaxial tensile strength, elongation and Izod impact toughness of sand casted aluminum alloy, while deterioration of a tensile strength fur die casted aluminum alloy. The effect of HIPing for microstructure of the cast aluminum alloy was also investigated.

삽입금속을 사용한 구상흑연주철과 2024 알루미늄합금의 마찰압접에 관한 연구 (Friction Welding of Spheroidal Graphite Cast Iron and 2024 Aluminium Alloys using Insert Metal)

  • 김창규;김치옥;김광일
    • 한국해양공학회지
    • /
    • 제17권5호
    • /
    • pp.76-81
    • /
    • 2003
  • Friction welding of GCD45 spheroidal graphite cast iron and 2024 aluminum alloy has been studied, especially in terms of the joint faces and strength of friction welding. For appropriate results of the friction welding of GCD45 graphite cast iron and 2024 aluminum alloy, an insert of A1050 pure aluminum metal was used. The joint strength of the A1050 pure aluminum insert approached the maximum strength of 165.7Mpa, compared to 128MPa for the joint between GCD45 graphite cast iron and A1050 pure aluminum without the insert metal. Maximum strength, 165.7Mpa, was possible for the following optimum conditions: 20MPa for the friction pressure, P1, 60MPa for the upsetting pressure, P2, 1 second for the friction time, t1, 3000rpm for the rotation, N, and 0.3 seconds for the brake time, tB.

알루미늄 기판 위 반응합성 Coating 된 Ni-Al계 금속간화합물의 미끄럼마모 특성 해석 (Sliding Wear Properties of Ni-Al based Intermetallics Layer coated on Aluminum through Reaction Synthesis Process)

  • 이한영
    • Tribology and Lubricants
    • /
    • 제34권2호
    • /
    • pp.67-73
    • /
    • 2018
  • Ni-Al intermetallic coating technology is an available method for the strengthening of aluminum substrate. In this study, Ni-Al intermetallics were coated on an aluminum substrate through a reaction synthesis process at a temperature lower than melting point of aluminum. And the sliding wear properties of the coatings have been investigated to verify their usability and compared the wear properties with those of a cast Al-12.5%Si alloy and an anodizing layer on aluminum. Results show that the wear rate of the coating layer greatly increased at 1 m/s and 1.5 m/s when compared with that of the cast Al-12.5%Si alloy. Much pitting damages were observed on the worn surfaces at these sliding speeds, unlike at other sliding speeds. The wear of the intermetallic coating layer at these sliding speeds seems to be increased by pitting as a consequence of adhesion. In contrast, wear of the coating layer at other speeds hardly occurs, regardless of wear periods. Nevertheless, the wear properties of the intermetallic coating layer on the aluminum substrate through the reaction synthesis process are more stable than those of anodized aluminum and are superior to those of the cast Al-12.5%Si alloy in a steady-state wear period.

세라믹 코팅이 기계 주조용 알루미늄합금(7075 T6)의 마찰ㆍ마모특성에 미치는 영향에 관한 연구 (A Study on the Influence of Ceramic Coating on Characteristics of Friction and Abrasion of Aluminum Alloy(7075 T6) Used in Mechanical Casting)

  • 류성기;정광조;로룡
    • 한국안전학회지
    • /
    • 제18권3호
    • /
    • pp.14-21
    • /
    • 2003
  • This study deals with the influence of ceramic coating on characteristics of friction and abrasion of aluminum allot(7075 T6) used in mechanical casting. In this research, frictional wear characteristic of ceramic coating materials such as $A1_2O_3$, $Si_3N_4$, SiC was investigated using aluminum alloy(7075 T6) and stainless 403 cast iron under room temperature and normal air pressure. The coating layer was observed using SEM. The conclusions are as follows: 1) Friction coefficients of $A1_2O_3$, SiC and $Si_3N_4$ are obtained 0.63 0.56 and 0.54 respectively. 2) Abrasion resistance of stainless 403 cast iron with $Si_3N_4$ is the best among the ceramic coating materials. 3) Abrasion mechanism of aluminum alloy(7075 T6) coaled with ceramic material and stainless 403 cast iron is caused by brittle fracture. 4) Coating the ceramic material on the aluminum alloy(7075 T6) can effectively increase the antiwear, impact properties, and corrosion resistance.

EFFECT OF MICROSTRUCTURE ON MECHANICAL PROPERTIES IN FRICTION STIR WELDED CAST A356 ALUMINUM ALLOY

  • Sato, Yutaka S.;Kaneko, Takayasu;Urata, Mitsunori;Kokawa, Hiroyuki
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.493-498
    • /
    • 2002
  • Friction stir welding (FSW) is a relatively new solid-state joining process which can homogenize the heterogeneous microstructure by intensely plastic deformation arising from the rotation of the welding tool. The present study applied the FSW to an A356 aluminum (AI) alloy with the as-cast heterogeneous microstructure in the T6 temper condition, and examined an effect of microstructure on mechanical properties in the weld. The base material consisted of Al matrix with a high density of strengthening precipitates, large eutectic silicon and a lot of porosities. The FSW led to fragment of the eutectic silicon, extinction of the porosities and dissolution of the strengthening precipitates in the Al alloy. The dissolution of strengthening precipitates reduced the hardness of the weld around the weld center and the transverse ultimate tensile strength of the weld. Longitudinal tensile specimen containing only the stir zone showed the roughly same strength as the base material and a much larger elongation. Moreover, Charpy impact tests indicated that the stir zone had remarkably the higher absorbed energy than the base material. The higher mechanical properties of the stir zone were attributed to a homogenization of the as-cast heterogeneous microstructure by FSW.

  • PDF

재활용 AC4A 알루미늄 합금의 인장특성에 미치는 (Ti-B), Sr 첨가제의 영향 (Effect of Sr and (Ti-B) Additives on Tensile Properties of AC4A Recycled Aluminum Casting Alloys)

  • 오승환;김헌주
    • 한국주조공학회지
    • /
    • 제38권5호
    • /
    • pp.87-94
    • /
    • 2018
  • The effects of Sr and (Ti-B) additives on the tensile properties of AC4A recycled (35% scrap content) aluminum alloys were investigated. An acicular morphology of the eutectic Si phase of as-cast specimens was converted to a fibrous morphology upon the addition of Sr. Moreover, morphology of the Sr modified eutectic Si phase became finer due to a T6 heat treatment. The grain size of the ${\alpha}$-solid solution was decreased by the addition of (Ti-B) additives. Depending on the treatment conditions of the as-cast specimens, i.e., no addition, a Sr addition and a (Ti-B)+Sr addition, the tensile strength levels of the as-cast specimens were 182, 192, and 204MPa, respectively. The corresponding strengths of T6 heat-treated specimens were 293, 308, and 318MPa. Elongations of the as-cast specimens were 2.2, 3.1, and 5.6%, and the corresponding elongations of the T6 heat-treated specimens were 4.6, 6.1, and 7.6%. The percentage of the reduced section area in the tensile specimens was also increased by the Sr and (Ti-B) additives. Sr and (Ti-B) additives changed the microstructure and the distribution of defects in the castings, resulting in an improvement of the tensile properties of AC4A aluminum alloys. According to our test results, recycled (35% scrap content) AC4A aluminum alloy met all of the KS requirements of the tensile strength and elongation values of AC4A aluminum alloy except for the elongation value of the one specimen condition, in this case the as-cast no-addition condition.

알루미늄 합금의 주조/단조 기술에 대한 기초연구 (The Basic Study on the Casting/Forging Technology of Aluminum Alloy)

  • 배원병;김영호;이영석;김맹수
    • 한국정밀공학회지
    • /
    • 제15권12호
    • /
    • pp.62-67
    • /
    • 1998
  • An experimental study has been carried out to investigate casting process parameters which influence on the microstructures of cast preforms in casting/forging process of aluminum alloy. In the casting process, pouring temperature, pouring time, mold temperature, mold material, and, cooling method are selected as process parameters. With the cast preform, a forging test has been performed to compare mechanical properties of final products between casting/forging process and forging process. From the experimental results, low mold temperature and water cooling method are favorable for obtaining minute microstructures of cast preforms. Casting defects included in cast preforms. such as pores and shrinkage cavity, are eliminated by the forging process. And comparing cast/forged products with conventionally forged products, the former are almost as same as the latter in mechanical characteristics.

  • PDF