DOI QR코드

DOI QR Code

Effect of Alloying Elements on the Thermal Conductivity and Casting Characteristics of Aluminum Alloys in High Pressure Die Casting

고압 다이캐스팅용 알루미늄 합금의 열전도성 및 주조성에 미치는 첨가원소의 영향

  • 김철우 (한국생산기술연구원서남지역본부 EV부품소재그룹) ;
  • 김영찬 (한국생산기술연구원서남지역본부 EV부품소재그룹) ;
  • 김정한 (한국생산기술연구원서남지역본부 EV부품소재그룹) ;
  • 조재익 (한국생산기술연구원서남지역본부 EV부품소재그룹) ;
  • 오민석 (전북대학교신소재공학부금속시스템공학과)
  • Received : 2018.05.11
  • Accepted : 2018.08.30
  • Published : 2018.11.05

Abstract

High pressure die casting is one of the precision casting methods. It is highly productivity and suitable for manufacturing components with complex shapes and accurate dimensions. Recently, there has been increasing demand for efficient heat dissipation components, to control the heat generated by devices, which directly affects the efficiency and life of the product. Die cast aluminum alloys with high thermal conductivity are especially needed for this application. In this study, the influence of elements added to the die cast aluminum alloy on its thermal conductivity was evaluated. The results showed that Mn remarkably deteriorated the thermal conductivity of the aluminum alloy. When Cu content was increased, the tensile strength of cast aluminum alloy increased, showing 1 wt% of Cu ensured the minimum mechanical properties of the cast aluminum. As Si content increased, the flow length of the alloy proportionally increased. The flow length of aluminum alloy containing 2 wt% Si was about 85% of that of the ALDC12 alloy. A heat dissipation component was successfully fabricated using an optimized composition of Al-1 wt%Cu-0.6 wt%Fe-2 wt%Si die casting alloy without surface cracks, which were turned out as intergranular cracking originated from the solidification contraction of the alloy with Si composition lower than 2 wt%.

Keywords

References

  1. K. P. Keller, IEEE, 10.1109/ITHERM, 112 (1998).
  2. K. Keller, IEEE, 10.1109/IEMTE, 113 (1998).
  3. J. R. Davis, ASM, 10.1361/autb, 351 (2001).
  4. C. R. Loper, Jr., AFS Trans. 533 (1992).
  5. C. Mascre, Fonderie, 108, 4330 (1995).
  6. H. Y. Kim, S. W. Han, and H. M. Lee, Mater. Lett. 60, 1880 (2006). https://doi.org/10.1016/j.matlet.2005.12.042
  7. S. S. Sreeja Kumari, R. M. Pillai, T. P. D. Rajan, and B. C. Pai, Mater. Sci. & Eng. A 460-461, 561 (2007). https://doi.org/10.1016/j.msea.2007.01.082
  8. L. A. Naraynan, F. H. Samuel, and J. E. Gruzleski, Metall. Mater. Trans. A 26A, 2161 (2004).
  9. W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, J. Appl. Phys. 32, 1679 (1961). https://doi.org/10.1063/1.1728417
  10. R. D. Cowan, J. Appl. Phys. 34, 926 (1963). https://doi.org/10.1063/1.1729564
  11. R. A. Goncalves, Procedia Manuf. 1, 683 (2015). https://doi.org/10.1016/j.promfg.2015.09.014
  12. L. F. Mondolfo, "Aluminum Alloys: Structure and Properties", Butter Worths (1976).
  13. H. J. Kim, C. M. Cho, and C. Y. Jeong, J.KFS, 29, 169 (2009).
  14. D. K. Lews, "Silicon and Its Effect on Fluidity of Aluminum Alloys.", A.S.&R. Co., Inc, Data Sheet.