• Title/Summary/Keyword: caspase-8

Search Result 563, Processing Time 0.027 seconds

Expression of the Antioxidant Enzyme and Apoptosis Genes in In vitro Maturation/In vitro Fertilization Porcine Embryos

  • Jang, H.Y.;Kong, H.S.;Lee, S.S.;Choi, K.D.;Jeon, G.J.;Yang, B.K.;Lee, C.K.;Lee, H.K
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.1
    • /
    • pp.33-38
    • /
    • 2004
  • This study was aimed at testing the gene expression of antioxidant enzymes and apoptosis genes for in vitro culture in porcine embryos produced by in vitro maturation/in vitro fertilization (IVM/IVF). Pocine preimplantation embryos obtainted from IVM/IVF can be successfully culture in vitro, but they are delayed or stop to develop at specific developmental stage. Many factors such as reactive oxygen species and apoptosis in an IVM/IVF system followed by in vitro culture influence the rate of production of viable blastocysts. Porcine embryos derived from IVM/IVF were cultured in the atmosphere of 5% $CO_2$ and 20% $O_2$ at $38.5^{\circ}C$ in NCSU23 medium. The patterns of gene expression for antioxidant enzymes and apoptosis genes during in vitro culture in pocine IVM/IVF embryos were examined by the modified semi-quantitative single cell reverse transcriptase-polymerase chain reaction (RT-PCR). Porcine embryos produced by in vitro procedures were expressed mRNAs for CuZn-SOD, GAPDH and GPX, whereas transcripts for Mn-SOD and catalase were not detected at any developmental stages. Expression of caspase-3 mRNA was detected at 2 cell, 8 cell 16 cell and blastocyst, but p53 mRNA was not detected at any stages. The fas transcripts was only detected in blastocyst stage. These results suggest that various antioxidant enzymes and apoptosis genes play crucial roles in vitro culture of porcine IVM/IVF embryos.

RASSF1A Suppresses Proliferation of Cervical Cancer Cells

  • Feng, Lei;Li, Jie;Yan, Ling-Di;Tang, Jian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5917-5920
    • /
    • 2014
  • Background: This study aimed to explore the effects of ras association domain family 1 A (RASSF1A) on proliferation and apoptosis of human cervical cancer cell line Hela cells. Materials and Methods: RASSF1A was cloned into the pcDNA3.1(+) vector to generate pcDNA3.1(+)-RASSF1A plasmid for transfection into Hela cells. Changes in the proliferation and apoptosis of cultured Hela cells were examined by the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium chloride assay and flow cytometry. A protein array was used to analyze the expression of apoptotic factors. Results: Plasmid pcDNA3.1(+)-RASSF1A was generated and transfected into Hela cells to stably express RASSF1A in Hela cells. RASSF1A transfection was effective in inhibiting the proliferation of Hela cells up to 52.4%, as compared to cells transfected with an empty plasmid. RASSF1A expression also successfully induced apoptosis in human cervical cells with an apoptosis rate of 20.5%. More importantly, protein array results showed that RASSF1 A transfection induced overexpression of p21 and caspase 8, while decreasing the expression of survivin in Hela cells. Conclusions: RASSF1A expression was effective in suppressing the proliferation and increasing apoptosis of Hela cells, and may be a potential therapy for cervical cancer in clinic.

Anticancer Properties of Icariside II in Human Oral Squamous Cell Carcinoma Cells

  • Kim, In-Ryoung;Kim, Young-Seok;Yu, Su-Bin;Kang, Hae-Mi;Kwak, Hyun-Ho;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • OSCC is currently the most common malignancy of the head and neck, affecting tens of thousands of patients per year worldwide. Natural flavonoids from plants are potential sources for novel anti-cancer drugs. Icariin is the active ingredient of flavonol glycoside, which is derived from the medical plant Herba Epimedii. A metabolite of icariin, icariside II exhibits a variety of pharmacological actions, including anti-rheumatic, anti-depressant, cardiovascular protective, and immunomodulatory functions. However, the exact mechanism causing the apoptosis-inducing effect of icariside II in OSCC is still not fully understood. In the present study, we assessed the anti-cancer effect of icariside II in OSCC cell lines by measuring its effect on cell viability, cell proliferation, and mitochondria membrane potential (MMP). Icariside II treatment of OSCC cells resulted in a dose- and time-dependent decrease in cell viability. Hoechst staining indicated apoptosis in icariside II-treated HSC cells. Icariside II inhibited cell proliferation and induced apoptosis in HSC cells, with significant increases in all present parameters in HSC-4 cells. The results clearly suggested that icariside II induced apoptosis via activation of intrinsic pathways and caspase cascades in HSC-4 cell lines. The collective findings of the study suggested that Icariside II is a potential treatment for OSCC; in addition, the data could provide a basis for the development of a novel anti-cancer strategy.

Influence of Rubiae Radix Extract on the Mechanism of Apoptosis in HL-60 Cells (천초근 추출물이 HL-60 세포주의 세포자멸사 기전에 미치는 영향)

  • Choi, Ho-Seung;Park, Jin-Mo;Ju, Sung-Min;Kim, Sung-Hoon;Kim, Dae-Keun;Kim, Won-Sin;Jeon, Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.3
    • /
    • pp.548-555
    • /
    • 2008
  • Rubiae radix belonging to the family Rubiaceae have been used in traditional medicine to blood stasis and hemostasis. In this study, we reported that methanol extract of Rubiae radix (RRME) induced apoptotic cell death through MAPKs activation in human promylocytic leukemia (HL-60) cells. The cytotoxic activity of activity of RRME in HL-60 cells was increased in a dose-dependent manner. RRME was cytotoxic to HL-60 cells, with IC50 of $8{\mu}g/mL$. Treatment of RRME to HL-60 cells showed apoptotic bodies, and the fragmentation of DNA, suggesting that these cells underwent apoptosis. Caspase-3 activity and PARP cleavage were time-dependently increased the expression of Bcl-2 and Bax. And ratio of Bax/Bcl-2 protein expression. Activation of p38 and JNK were increased 6 hr after RRME treatment in HL-60 cells, but activation of ERK was reduced 24 hr after treatment. Taken together, these results suggest that RRME induces apoptotic cell death through activation of p38 and JNK in HL-60 cells.

Hyperglycemia Influences Apoptosis and Autophagy in Porcine Parthenotes Developing In Vitro

  • Xu, Yong-Nan;Li, Ying-Hua;Lee, Sung Hyun;Kwon, Jung-Woo;Lee, Seul Ki;Heo, Young-Tae;Cui, Xiang-Shun;Kim, Nam-Hyung
    • Reproductive and Developmental Biology
    • /
    • v.37 no.2
    • /
    • pp.65-73
    • /
    • 2013
  • The objective of this study was to examine the effects of high concentrations of glucose on porcine parthenotes developing in vitro. Addition of 55 mM glucose to the culture medium of embryos at the four-cell-stage significantly inhibited blastocyst formation, resulting in fewer cells in blastocyst-stage embryos and increased levels of apoptosis and autophagy compared to control. Quantitative reverse transcriptase (RT) PCR analysis revealed that the expression of pro-apoptotic genes (Caspase 3, Bax and Bak) and autophagy genes (Atg6 and Atg8/Lc3) were increased significantly by the addition of 55 mM glucose to the culture medium compared to control. MitoTracker Green fluorescence revealed a decrease in the overall mitochondrial mass compared to control. However, the addition of 55 mM glucose had no effect on mRNA expression of the nuclear DNA-encoded mitochondrial-related genes, cytochrome oxidase (Cox) 5a, Cox5b and Cox6b1. These results suggest that hyperglycemia reduced the mitochondrial content of porcine embryos developing in vitro and that this may hinder embryonic development to the blastocyst stage and embryo quality by increasing apoptosis and autophagy in these embryos.

Microarray Analysis of Alteration in Gene Expression by Acori graminei rhizoma (AGR) Water-Extract in a Hypoxic Model of Cultured Rat Cortical Cells (흰쥐 대뇌세포의 저산소증 모델에서 석창포(石菖浦 Acori graminei rhizoma. AGR)에 의한 유전자 표현 변화의 microarray 분석)

  • Park, Dong-Jun;Jung, Seung-Hyun;Moon, Il-Soo;Lee, Won-Chol;Shin, Gil-Jo
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.150-161
    • /
    • 2007
  • Acori graminei Rhizomn (AGR) is a perennial herb which has been used clinically as a traditional oriental medicine against stroke, Alzheimer's disease, and vascular dementia. We investigated the effect of AGR on the modulation of gene expression profile in a hypoxic model of cultured rat cortical cells. Rat cerebrocortical cells were grown in Neurobasal medium. On DIV12, cells were treated with AGR $(10ug/m\ell)$, given a hypoxic shock (2% $O_2$, 3 hr) on DIV14, and total RNAs were prepared one day after shock. Microarray analyses indicated that the expression levels of most genes were altered within the global M values +0.5 and -0.5, i.e., 40% increase or decrease. There were 750 genes which were upregulated by < global M +0,2, while 700 genes were downregulated by > global M -0.2. The overall profile of gene expression suggests that AGR suppresses apoptosis (upregulation of anti-apopotic genes such as TEGT, TIEG, Dad, p53, and downregulation of pro-apopotic genes such as DAPK, caspase 2, pdcd8), ROS (upregulation of RARa, AhR), and that AGR has neurotrophic effects (upregulation of Aktl, Akt2). These results provide a platform for investigation of the molecular mechanism of the effect of AGR in neuroprotection.

Sun Ginseng Protects Endothelial Progenitor Cells From Senescence Associated Apoptosis

  • Im, Woo-Seok;Chung, Jin-Young;Bhan, Jae-Jun;Lim, Ji-Yeon;Lee, Soon-Tae;Chu, Kon;Kim, Man-Ho
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.78-85
    • /
    • 2012
  • Endothelial progenitor cells (EPC) are a population of cells that circulate in the blood stream. They play a role in angiogenesis and, therefore, can be prognostic markers of vascular repair. Ginsenoside $Rg_3$ prevents endothelial cell apoptosis through the inhibition of the mitochondrial caspase pathway. It also affects estrogen activity, which reduces EPC senescence. Sun ginseng (SG), which is heat-processed ginseng, has a high content of ginsenosides. The purpose of this study was to investigate the protective effects of SG on senescence-associated apoptosis in EPCs. In order to isolate EPCs, mononuclear cells of human blood buffy coats were cultured and characterized by their uptake of acetylated low-density lipoprotein (acLDL) and their binding of Ulex europaeus agglutinin I (ulex-lectin). Flow cytometry with annexin-V staining was performed in order to assess early and late apoptosis. Senescence was determined by ${\beta}$-galactosidase (${\beta}$-gal) staining. Staining with 4'-6-Diamidino-2-phenylindole verified that most adherent cells (93${\pm}$2.7%) were acLDL-positive and ulex-lectin-positive. The percentage of ${\beta}$-gal-positive EPCs was decreased from 93.8${\pm}$2.0% to 62.5${\pm}$3.6% by SG treatment. A fluorescence-activated cell sorter (FACS) analysis showed that 4.9% of EPCs were late apoptotic in controls. Sun ginseng decreased the apoptotic cell population by 39% in the late stage of apoptosis from control baseline levels. In conclusion, these results show antisenescent and antiapoptotic effects of SG in human-derived EPCs, indicating that SG can enhance EPC-mediated repair mechanisms.

Anti-Cancer Effect of Ginsenoside F2 against Glioblastoma Multiforme in Xenograft Model in SD Rats

  • Shin, Ji-Yon;Lee, Jung-Min;Shin, Heon-Sub;Park, Sang-Yong;Yang, Jung-Eun;KimCho, So-Mi;Yi, Tae-Hoo
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.86-92
    • /
    • 2012
  • The glioblastoma multiforme (GBM) is the most common malignant brain tumor in adults. Despite combination treatments of radiation and chemotherapy, the survival periods are very short. Therefore, this study was conducted to assess the potential of ginsenoside $F_2$ (F2) to treat GBM. In in vitro experiments with glioblastoma cells U373MG, F2 showed the cytotoxic effect with $IC_{50}$ of 50 ${\mu}g/mL$ through apoptosis, confirmed by DNA condensation and fragmentation. The cell population of cell cycle sub-G1 as indicative of apoptosis was also increased. In xenograft model in SD rats, F2 at dosage of 35 mg/kg weight was intravenously injected every two days. This reduced the tumor growth in magnetic resonance imaging images. The immunohistochemistry revealed that the anticancer activity might be mediated through inhibition of proliferation judged by Ki67 and apoptosis induced by activation of caspase-3 and -8. And the lowered expression of CD31 showed the reduction in blood vessel densities. The expression of matrix metalloproteinase-9 for invasion of cancer was also inhibited. The cell populations with cancer stem cell markers of CD133 and nestin were reduced. The results of this study suggested that F2 could be a new potential chemotherapeutic drug for GBM treatment by inhibiting the growth and invasion of cancer.

Combined Treatment with Coptidis Rhizoma Extract and Arsenic Trioxide Enhanced Apoptosis through Diverse Pathways in H157 Cells

  • Youn, Myung-Ja;Kim, Yun-Ha;Kim, Hyung-Jin;Song, Je-Ho;Jeon, Ho-Sung;Yu, Dong-Hee;Sul, Jeong-Dug;So, Hong-Seob;Park, Rae-Kil
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.6
    • /
    • pp.1449-1459
    • /
    • 2009
  • Coptidis rhizoma (huanglian) is an herb that is widely used in traditional Chinese medicine that has recently been shown to possess anticancer activity. However, the molecular mechanism underlying the anticancer effects of this herb is poorly understood. In this study, we investigated the anticancer activity of a combination of CR extract and arsenic trioxide, as well as the apoptotic pathway associated with its mechanism of action in human lung cancer H157 cells. Combined treatment of H157 cells with CR extract and arsenic trioxide resulted in significant apoptotic death. In addition, combined treatment with CR extract and arsenic trioxide acted in concert to induce a loss of mitochondrial membrane potential (${\Delta}{\Psi}$), the release of cytochrome c from mitochondria, and an increase in the expression of pro-apoptotic p53 and Bax protein, which resulted in activation of caspases and apoptosis. CR extract combined with arsenic trioxide also increased the lipid peroxidation, mRNA expression of DR4 and DR5 and caspase-8 activity. These data indicate that combined treatment with CR extract and arsenic trioxide enhanced apoptotic cell death in H157 cells through diverse pathways, including mitochondrial dysfunction and death receptors, particularly DR4 and DR5. Thus, this treatment may be an effective from of chemotherapy.

A5E promotes Cell growth Arrest and Apoptosis in Non Small Cell Lung Cancer

  • Bak, Ye Sol;Ham, Sun Young;O, Baatartsogt;Jung, Seung Hyun;Choi, Kang Duk;Han, Tae Young;Han, Il Young;Yoon, Do-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.2
    • /
    • pp.113-122
    • /
    • 2014
  • A5E is complex of several medicinal herb ethanol extracts. The aim of this study is investigating the anticancer effect for non-small cell lung cancer. The antitumor effects of A5E on NCI-H460 were examined by regulation of cell proliferation, apoptosis, cell cycle arrest, mitochondrial membrane potential (${\Delta}{\Psi}_m$), and apoptosis-related protein. Cell proliferation was measured by MTS assay. Apoptosis induced by A5E was confirmed by Annexin V-fluorescein isothiocyanate (FITC)/Propidium Iodide (PI) staining, and cell cycle arrest was measured by PI staining. NF-${\kappa}B$ translocation was detected by immunofluorescence and MMP (${\Delta}{\Psi}_m$) was measured by JC-1 staining. The expression of extrinsic pathway molecules such as FasL and FADD were elevated, and procaspase-8 was processed by A5E. In addition, intrinsic pathway related molecules were altered. The Bcl-2 and Bcl-xl levels decreased, Bax increased, and cytochrome C was released. In addition, the mitochondrial membrane potential collapsed, and caspase-3 and poly-(ADP-ribose) polymerase were processed by A5E. Moreover, A5E affected the cellular survival pathway involving phosphatidylinositol 3-kinase (PI3K)/Akt and NF-${\kappa}B$. PI3K and Akt were downregulated, also NF-${\kappa}B$ expression was decreased, and nuclear translocalization was inhibited by A5E. These results suggested that A5E delays proliferation, inhibit cell cycle progression and induce apoptosis in human lung cancer cell. We conclude that A5E is a potential anticancer agent for human lung carcinoma.