• Title/Summary/Keyword: caspase-8

Search Result 564, Processing Time 0.033 seconds

Ginsenoside Rb1 Inhibits Doxorubicin-Triggered H9C2 Cell Apoptosis via Aryl Hydrocarbon Receptor

  • Zhang, Yaxin;Wang, Yuguang;Ma, Zengchun;Liang, Qiande;Tang, Xianglin;Tan, Hongling;Xiao, Chengrong;Gao, Yue
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.202-212
    • /
    • 2017
  • Doxorubicin (DOX) is a highly effective chemotherapeutic agent; however, the dose-dependent cardiotoxicity associated with DOX significantly limits its clinical application. In the present study, we investigated whether Rb1 could prevent DOX-induced apoptosis in H9C2 cells via aryl hydrocarbon receptor (AhR). H9C2 cells were treated with various concentrations ($-{\mu}M$) of Rb1. AhR, CYP1A protein and mRNA expression were quantified with Western blot and real-time PCR analyses. We also evaluated the expression levels of caspase-3 to assess the anti-apoptotic effects of Rb1. Our results showed that Rb1 attenuated DOX-induced cardiomyocytes injury and apoptosis and reduced caspase-3 and caspase-8, but not caspase-9 activity in DOX-treated H9C2 cells. Meanwhile, pre-treatment with Rb1 decreased the expression of caspase-3 and PARP in the protein levels, with no effects on cytochrome c, Bax, and Bcl-2 in DOX-stimulated cells. Rb1 markedly decreased the CYP1A1 and CYP1A2 expression induced by DOX. Furthermore, transfection with AhR siRNA or pre-treatment with AhR antagonist CH-223191 significantly inhibited the ability of Rb1 to decrease the induction of CYP1A, as well as caspase-3 protein levels following stimulation with DOX. In conclusion, these findings indicate that AhR plays an important role in the protection of Ginsenoside Rb1 against DOX-triggered apoptosis of H9C2 cells.

Sodium Salicylate(NaSaL) Induces Apoptosis of NCI-H1299 Lung Carcinoma Cells via Activation Caspase-3 Protease (NCI-H1299 폐암 세포주에서 Caspase-3 Protease 활성을 통한 Sodium Salicylate(NaSaL)의 세포고사)

  • Shim, Hyeok;Yang, Sei-Hoon;Bak, Sang-Myeon;Jeong, Eun-Taik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.53 no.5
    • /
    • pp.485-496
    • /
    • 2002
  • Background : Nonsteroidal anti-inflammatory drugs (NSAIDs) are useful in the chemoprevention of colon cancers. Continuous NSAID use results in a 40% to 50% reduction in the relative risk of colorectal cancer. The precise mechanism by which NSAIDs prevent and/or cause the regression of colorectal tumors is not known. Some investigators have reported that certain NSAIDs induce apoptosis and alter the expression of the cell cycle regulatory genes in some carcinoma cells when administered at a relatively high concentration. However, the possibility of NSAIDs application as chemopreventive agents in lung cancers remains to be elucidated. To address this question, the human lung cancer cell line NCI-H1299 was used to investigate whether or not NSAIDs might induce the apoptotic death of NCI-H1299 cells. Methods : A viability test was carried out using a MTT assay. Apoptosis was measured by flow cytometric analysis and unclear staining(DAPI). The talytic activity of the caspase family was measured by the fluirigenic cleavage of biosubstrates. To define the mechanical basis of apoptosis, western blot was performed to analyze the expression of the death substrates(PARP and ICAD). Results : NaSaL significantly decreased the viability of the NCI-H1299 cells, which was revealed as apoptosis characterized by an increase in the $subG_0/G_1$ population and unclear fragmentation. The catalytic activity of caspase-3 protease began to increase after 24 Hr and reached a peak 30 Hr after treatment with 10 mM NaSaL. In contrast, caspase-6, 8, and 9 proteases did not have a significantly altered enzymatic activity. Consistent with activation of caspase-3 protease, NaSaL induced the cleavage of the protease biosubstrate. Conclusion : NaSaL induces the apoptotic death of NCI-H1299 human lung cancer cells via the activation of caspase-3 protease.

Sagantang-induced Apoptotic Cell Death is Associated with the Activation of Caspases in AGS Human Gastric Carcinoma Cells (사간탕 처리에 의한 AGS 인체 위암세포의 caspase 활성 의존적 apoptosis 유발)

  • Park, Cheol;Hong, Su Hyun;Choi, Sung Hyun;Lee, Se-Ra;Leem, Sun-Hee;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1384-1392
    • /
    • 2015
  • Sagantang (SGT), a Korean multiherb formula comprising six medicinal herbs, Paeonia lactiflora Pall., Belamcanda chinensis (L.) DC, Gardenia jasminoides Ellis, Poria cocos Wolf, Cimicifuga heracleifolia Komarov, and Artractylodes japonica Koidzumi, was recorded in “Dongeuibogam.” The present study investigated the anticancer potential of SGT in AGS human gastric carcinoma cells. The results indicated that SGT treatment significantly inhibited the growth and viability of AGS cells in a dose-dependent manner, which was associated with the induction of apoptotic cell death, as evidenced by the formation of apoptotic bodies, in addition to chromatin condensation and DNA fragmentation, and the accumulation of annexin-V positive cells. The induction of apoptotic cell death by the SGT treatment was associated with up-regulation of Fas protein expression, truncation of Bid, and down-regulation of the anti-apoptotic Bcl-2 protein. The SGT treatment also effectively induced the loss of mitochondrial membrane potential, which was associated with the activation of caspases (caspase-3, -8, and -9) and degradation of poly (ADP-ribose) polymerase. However, a pan-caspase inhibitor significantly blocked the SGT-induced apoptosis and growth suppression in AGS cells. This study suggests that SGT induces caspase-dependent apoptosis through an extrinsic pathway by upregulating Fas, as well as through an intrinsic pathway by modulating Bcl-2 family members in AGS cells. The results suggest that SGT may be a potential chemotherapeutic agent for the control of human gastric cancer cells. However, further studies will be needed to confirm the potential of SGT in cancer prevention and therapy in an in vivo model and to identify biological active compounds of SGT.

The Extract from Artemisia annua Linné. Induces p53-independent Apoptosis through Mitochondrial Signaling Pathway in A549 Lung Cancer Cells (A549 폐암세포에서 미토콘드리아 경로를 통한 개똥쑥 추출물의 apoptosis 유도 효과)

  • Kim, Bo-Min;Kim, Guen-Tae;Kim, Eun-Ji;Lim, Eun-Gyeong;Kim, Sang-Yong;Kim, Young-Min
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.887-894
    • /
    • 2016
  • The extract from Artemisia annuain L.(AAE) is known as a medicinal herb that is effective against cancer. Apoptosis is the process of programmed cell death, and mitochondria are known to play a central role in cell death control. In this study, we evaluated the p53-independent apoptosis of extract of AAE through downregulation of Bcl-2 and the mitochondrial pathway in A549 (lung cancer cells). AAE may exert cancer cell apoptosis through regulating p-Akt, Cox-2, p53 and mitochondria-mediated apoptotic proteins. p-Akt/cox-2 is known to play an important role in cell proliferation and cell survival. The Bcl-2 pro-apoptotic proteins (such as Bax, Bak and Bim) mediate the permeabilization of the mitochondrial outer membrane. Treatment of AAE reduces p-Akt, p-Mdm2, cox-2 and anti-apoptotic proteins (such as Bcl-2), while tumor suppressor p53 and pro-apoptotic proteins. Activation of Bax/Bak releases cytochrome c from mitochondria to the cytosol to activate a caspase. Caspase-3 is the major effector caspase associated with apoptotic pathways. Caspase-3 generally exists in cytoplasm in the form of a pro-enzyme. In the initiation stage of apoptosis, caspase-3 is activated by proteolytic cleavage and activated caspase-3 cleaves poly (ADP-ribose) polymerase (PARP). We treated Pifithrin-α (p53 inhibitor) and Celecoxib (Cox-2 inhibitor) to learn the relationship between the signal transduction of proteins associated with apoptosis. These results suggest that AAE induces apoptosis through a p53-independent pathway in A549.

Induction of Apoptosis by Water Extract of Glycyrrhizae radix in Human Bladder T24 Cancer Cells (인체 방광암 T24 세포에서 감초(Glycyrrhizae radix) 열수추출물에 의한 apoptosis 유도)

  • Lee, Ki Won;Kim, Jeong Il;Lee, Seung Young;Choi, Kyung-Min;Oh, Young Taek;Jeong, Jin-Woo
    • Korean Journal of Plant Resources
    • /
    • v.32 no.4
    • /
    • pp.255-263
    • /
    • 2019
  • Glycyrrhizae radix is one of the most frequently prescribed ingredients in Oriental medicine, and Glycyrrhizae radix extract has been shown to exert anti-cancer effects. However, the cellular and molecular mechanisms of programed cell death (apoptosis) by Glycyrrhizae radix are poorly defined. In the present study, it was examined the molecular mechanisms of apoptosis by water extracts of Glycyrrhizae radix (GRW) in human bladder T24 cancer cells. It was found that GRW could inhibit the cell growth of T24 cells in a concentration-dependent manner, which was associated with the induction of apoptotic cell death, as evidenced by the formation of apoptotic bodies, DNA fragmentation and increased populations of annexin-V positive cells. The induction of apoptotic cell death by GRW was connected with an up-regulation of pro-apoptotic Bax protein expression and down-regulation of anti-apoptotic proteins (Bcl-2 and Bcl-xL), and inhibition of apoptosis family proteins (XIAP, cIAP-1 and cIAP-2). In addition, apoptosis-inducing concentrations of GRW induced the activation of caspase-9, an initiator caspase of the mitochondrial-mediated intrinsic pathway, and caspase-3, accompanied by proteolytic degradation of PARP. GRW also induced apoptosis via a death receptor-mediated extrinsic pathway by caspase-8 activation, resulting in the down-regulation of total Bid and suggesting the existence of cross-talk between the extrinsic and intrinsic pathways. Taken together, the present results suggest that GRW may be a potential chemotherapeutic agent for the control of human bladder cancer cells.

Effects of Isothiocyanates on Antioxidant Response Element-mediated Gene Expression and Apoptosis

  • Hong Sung-Jae;Kim Sung-Min;Kim Young-Sook;Hu Rong;Kong A.N. Tony;Kim Bok-Ryang
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2004.11a
    • /
    • pp.53-60
    • /
    • 2004
  • The pro-apoptotic effect of phenethyl isothiocyanate (PEITC) and the role of glutathione (GSH) in sulforaphane (SFN)-induced antioxidant response element-dependent gene expression were investigated. The caspase-3 and caspase-9 activities were stimulated by PEITC. The release of cytochrome c was time- and dose- dependent. SP600125 suppressed apoptosis induced by PEITC. Similarly, this JNK inhibitor attenuated both cytochrome c release and caspase-3 activation induced by PEITC. SFN is converted to the glutathione conjugate by glutathione S-transferases (GSTs). It was accumulated in mammalian cells by up to several hundred-fold over the extracellular concentration, by conjugation with intracellular GSH. The induction of ARE by SFN was 8.6-fold higher than by SFN-NAC. The decrease in ARE expression at higher concentrations of SFN and SFN-NAC was correlated with the accelerated apoptotic cell death, with a dose-dependent activation of caspase 3 activity by SFN. Upon addition of extracellular GSH within 6 hr of treatment with SFN, the effect on ARE expression was blocked almost completely.

  • PDF

Parkin induces apoptotic cell death in TNF-α-treated cervical cancer cells

  • Lee, Kyung-Hong;Lee, Min-Ho;Kang, Yeo-Wool;Rhee, Ki-Jong;Kim, Tae-Ue;Kim, Yoon-Suk
    • BMB Reports
    • /
    • v.45 no.9
    • /
    • pp.526-531
    • /
    • 2012
  • Many malignant tumors become resistant to tumor necrosis factor-alpha (TNF-${\alpha}$)-induced cell death during carcinogenesis. In the present study, we examined whether parkin acts as a tumor suppressor in HeLa cells, a human cervical cancer cell line resistant to TNF-${\alpha}$-induced cell death. TNF-${\alpha}$-treatment alone did not affect HeLa cell viability. However, expression of parkin restored TNF-${\alpha}$-induced apoptosis in HeLa cells. Increased cell death was due to the activation of the apoptotic pathway. Expression of parkin in TNF-${\alpha}$-treated HeLa cells stimulated cleavage of the pro-apoptotic proteins caspase-8, -9, -3, -7 and poly ADP ribose polymerase (PARP). In addition, parkin expression resulted in decreased expression of the caspase inhibitory protein, survivin. These results suggest that parkin acts as a tumor suppressor in human cervical cancer cells by modulating survivin expression and caspase activity. We propose that this pathway is a novel molecular mechanism by which parkin functions as a tumor suppressor.