Ginsenoside Rb1 Inhibits Doxorubicin-Triggered H9C2 Cell Apoptosis via Aryl Hydrocarbon Receptor

  • Zhang, Yaxin (Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine) ;
  • Wang, Yuguang (Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine) ;
  • Ma, Zengchun (Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine) ;
  • Liang, Qiande (Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine) ;
  • Tang, Xianglin (Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine) ;
  • Tan, Hongling (Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine) ;
  • Xiao, Chengrong (Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine) ;
  • Gao, Yue (Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine)
  • Received : 2016.03.22
  • Accepted : 2016.06.28
  • Published : 2017.03.01


Doxorubicin (DOX) is a highly effective chemotherapeutic agent; however, the dose-dependent cardiotoxicity associated with DOX significantly limits its clinical application. In the present study, we investigated whether Rb1 could prevent DOX-induced apoptosis in H9C2 cells via aryl hydrocarbon receptor (AhR). H9C2 cells were treated with various concentrations ($-{\mu}M$) of Rb1. AhR, CYP1A protein and mRNA expression were quantified with Western blot and real-time PCR analyses. We also evaluated the expression levels of caspase-3 to assess the anti-apoptotic effects of Rb1. Our results showed that Rb1 attenuated DOX-induced cardiomyocytes injury and apoptosis and reduced caspase-3 and caspase-8, but not caspase-9 activity in DOX-treated H9C2 cells. Meanwhile, pre-treatment with Rb1 decreased the expression of caspase-3 and PARP in the protein levels, with no effects on cytochrome c, Bax, and Bcl-2 in DOX-stimulated cells. Rb1 markedly decreased the CYP1A1 and CYP1A2 expression induced by DOX. Furthermore, transfection with AhR siRNA or pre-treatment with AhR antagonist CH-223191 significantly inhibited the ability of Rb1 to decrease the induction of CYP1A, as well as caspase-3 protein levels following stimulation with DOX. In conclusion, these findings indicate that AhR plays an important role in the protection of Ginsenoside Rb1 against DOX-triggered apoptosis of H9C2 cells.



Supported by : National Natural Science Foundation of China


  1. Aboutabl, M. E., Zordoky, B. N. and El-Kadi, A. O. (2009) 3-methylcholanthrene and benzo(A)pyrene modulate cardiac cytochrome P450 gene expression and arachidonic acid metabolism in male Sprague Dawley rats. Br. J. Pharmacol. 158, 1808-1819.
  2. Ansari, M. A., Maayah, Z. H., Bakheet, S. A., El-Kadi, A. O. and Korashy, H. M. (2013) The role of aryl hydrocarbon receptor signaling pathway in cardiotoxicity of acute lead intoxication in vivo and in vitro rat model. Toxicology 306, 40-49.
  3. Aoyama, T., Korzekwa, K., Nagata, K., Gillette, J., Gelboin, H. V. and Gonzalez, F. J. (1990) Estradiol metabolism by complementary deoxyribonucleic acid-expressed human cytochrome P450s. Endocrinology 126, 3101-3106.
  4. Arola, O. J., Saraste, A., Pulkki, K., Kallajoki, M., Parvinen, M. and Voipio-Pulkki, L. M. (2000) Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer Res. 60, 1789-1792.
  5. Chen, Z. H., Hurh, Y. J., Na, H. K., Kim, J. H., Chun, Y. J., Kim, D. H., Kang, K. S., Cho, M. H. and Surh, Y. J. (2004) Resveratrol inhibits TCDD-induced expression of CYP1A1 and CYP1B1 and catechol estrogen-mediated oxidative DNA damage in cultured human mammary epithelial cells. Carcinogenesis 25, 2005-2013.
  6. Childs, A. C., Phaneuf, S. L., Dirks, A. J., Phillips, T. and Leeuwenburgh, C. (2002) Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2:Bax ratio. Cancer Res. 62, 4592-4598.
  7. Davila, J. C. and Morris, D. L. (1999) Analysis of cytochrome P450 and phase II conjugating enzyme expression in adult male rat hepatocytes. In Vitro Cell. Dev. Biol. Anim. 35, 120-130.
  8. Elbekai, R. H. and El-Kadi, A. O. (2006) Cytochrome P450 enzymes: Central players in cardiovascular health and disease. Pharmacol. Ther. 112, 564-587.
  9. Elbekai, R. H., Korashy, H. M. and El-Kadi, A. O. (2004) The effect of liver cirrhosis on the regulation and expression of drug metabolizing enzymes. Curr. Drug Metab. 2, 157-167.
  10. Green, D. R. and Reed, J. C. (1998) Mitochondria and apoptosis. Science 281, 1309-1312.
  11. Guengerich, F. P. (2004) Cytochrome P450: what have we learned and what are the future issues? Drug Metab. Rev. 36, 159-197.
  12. Hamada, M., Satsu, H., Natsume, Y., Nishiumi, S., Fukuda, I., Ashida, H. and Shimizu, M. (2006) TCDD-induced CYP1A1 expression, an index of dioxin toxicity, is suppressed by flavonoids permeating the human intestinal Caco-2 cell monolayers. J. Agric. Food Chem. 54, 8891-8898.
  13. Hayes, C. L., Spink, D. C., Spink, B. C., Cao, J. Q., Walker, N. J. and Sutter, T. R. (1996) 17 beta-estradiol hydroxylation catalyzed by human cytochrome P450 1B1. Proc. Natl. Acad. Sci. U.S.A. 93, 9776-9781.
  14. Hu, Q., He, G., Zhao, J., Soshilov, A., Denison, M. S., Zhang, A., Yin, H., Fraccalvieri, D., Bonati, L., Xie, Q. and Zhao, B. (2013) Ginsenosides are novel naturally-occurring aryl hydrocarbon receptor ligands. PLoS ONE 8, e66258.
  15. Kamath, A. B., Camacho, I., Nagarkatti, P. S. and Nagarkatti, M. (1999) Role of Fas-Fas ligand interactions in 2,3,7,8-tetrachlorodibenzop-dioxin (TCDD)-induced immunotoxicity: increased resistance of thymocytes from Fas-deficient (lpr) and Fas ligand-defective (gld) mice to TCDD-induced toxicity. Toxicol. Appl. Pharmacol. 160, 141-155.
  16. Kawamura, T. and Yamashita, I. (2002) Aryl hydrocarbon receptor is required for prevention of blood clotting and for the development of vasculature and bone in the embryos of medaka fish, Oryzias latipes. Zool. Sci. 19, 309-319.
  17. Kehl, F., Cambj-Sapunar, L., Maier, K. G., Miyata, N., Kametani, S., Okamoto, H., Hudetz, A. G., Schulte, M. L., Zagorac, D., Harder, D. R. and Roman, R. J. (2002) 20-HETE contributes to the acute fall in cerebral blood flow after subarachnoid hemorrhage in the rat. Am. J. Physiol. Heart Circ. Physiol. 282, H1556- H1565.
  18. Korashy, H. M. and El-Kadi, A. O. (2006) The role of aryl hydrocarbon receptor in the pathogenesis of cardiovascular diseases. Drug Metab. Rev. 38, 411-450.
  19. Lavigne, J. A., Goodman, J. E., Fonong, T., Odwin, S., He, P., Roberts, D. W. and Yager, J. D. (2001) The effects of catechol-O-methyltransferase inhibition on estrogen metabolite and oxidative DNA damage levels in estradiol-treated MCF-7 cells. Cancer Res. 61, 7488-7494.
  20. Lv, X., Yu, X., Wang, Y., Wang, F., Li, H., Wang, Y., Lu, D., Qi, R. and Wang, H. (2012) Berberine inhibits doxorubicin-triggered cardiomyocyte apoptosis via attenuating mitochondrial dysfunction and increasing Bcl-2 expression. PLoS ONE 7, e47351.
  21. Maayah, Z. H., Ansari, M. A., El Gendy, M. A., Al-Arifi, M. N. and Korashy, H. M. (2014) Development of cardiac hypertrophy by sunitinib in vivo and in vitro rat cardiomyocytes is influenced by the aryl hydrocarbon receptor signaling pathway. Arch. Toxicol. 88, 725-738.
  22. Minotti, G., Menna, P., Salvatorelli, E., Cairo, G. and Gianni, L. (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 56, 185-229.
  23. Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J. and Moens, A. L. (2012) Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J. Mol. Cell. Cardiol. 52, 1213-1225.
  24. Pasupathy, S. and Homer-Vanniasinkam, S. (2005) Ischaemic preconditioning protects against ischaemia/reperfusion injury: emerging concepts. Eur. J. Vasc. Endovasc. Surg. 29, 106-115.
  25. Rhile, M. J., Nagarkatti, M. and Nagarkatti, P. S. (1996) Role of Fas apoptosis and MHC genes in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced immunotoxicity of T cells. Toxicology 110, 153-167.
  26. Roman, R. J. (2002) P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol. Rev. 82, 131-185.
  27. Schwarz, D., Kisselev, P., Ericksen, S. S., Szklarz, G. D., Chernogolov, A., Honeck, H., Schunck, W. H. and Roots, I. (2004) Arachidonic and eicosapentaenoic acid metabolism by human CYP1A1: highly stereoselective formation of 17(R),18(S)-epoxyeicosatetraenoic acid. Biochem. Pharmacol. 67, 1445-1457.
  28. Scott, G. I., Colligan, P. B., Ren, B. H. and Ren, J. (2001) Ginsenosides Rb-1 and Re decrease cardiac contraction in adult rat ventricular myocytes: role of nitric oxide. Br. J. Pharmacol. 134, 1159-1165.
  29. Shi, R., Huang, C. C., Aronstam, R. S., Ercal, N., Martin, A. and Huang, Y. W. (2009) N-acetylcysteine amide decreases oxidative stress but not cell death induced by doxorubicin in H9c2 cardiomyocytes. BMC Pharmacol. 9, 7.
  30. Steenland, K., Piacitelli, L., Deddens, J., Fingerhut, M. and Chang, L. I. (1999) Cancer, heart disease, and diabetes in workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. J. Natl. Cancer Inst. 91, 779-786.
  31. Su, P., Kaushal, K. M. and Kroetz, D. L. (1998) Inhibition of renal arachidonic acid omega-hydroxylase activity with ABT reduces blood pressure in the SHR. Am. J. Physiol. 275, R426-R438.
  32. Takemura, G. and Fujiwara, H. (2007) Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog. Cardiovasc. Dis. 49, 330-352.
  33. Tsuchiya, Y., Nakajima, M. and Yokoi, T. (2005) Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett. 227, 115-124.
  34. Uno, S., Dalton, T. P., Sinclair, P. R., Gorman, N., Wang, B., Smith, A. G., Miller, M. L., Shertzer, H. G. and Nebert, D. W. (2004) Cyp1a1(-/-) male mice: protection against high-dose TCDD-induced lethality and wasting syndrome, and resistance to intrahepatocyte lipid accumulation and uroporphyria. Toxicol. Appl. Pharmacol. 196, 410-421.
  35. Volkova, M., Palmeri, M., Russell, K. S. and Russell, R. R. (2011) Activation of the aryl hydrocarbon receptor by doxorubicin mediates cytoprotective effects in the heart. Cardiovasc. Res. 90, 305-314.
  36. Wallace, K. B. (2003) Doxorubicin-induced cardiac mitochondrionopathy. Pharmacol. Toxicol. 93, 105-115.
  37. Wang, X. F., Liu, X. J., Zhou, Q. M., Du, J., Zhang, T. L., Lu, Y. Y. and Su, S. B. (2013) Ginsenoside rb1 reduces isoproterenol-induced cardiomyocytes apoptosis in vitro and in vivo. Evid. Based Complement. Alternat. Med. 2013, 454389.
  38. Wang, Y., Ye, X., Ma, Z., Liang, Q., Lu, B., Tan, H., Xiao, C., Zhang, B. and Gao, Y. (2008) Induction of cytochrome P450 1A1 expression by ginsenoside Rg1 and Rb1 in HepG2 cells. Eur. J. Pharmacol. 601, 73-78.
  39. Xu, X., Chen, K., Kobayashi, S., Timm, D. and Liang, Q. (2012) Resveratrol attenuates doxorubicin-induced cardiomyocyte death via inhibition of p70 S6 kinase 1-mediated autophagy. J. Pharmacol. Exp. Ther. 341, 183-195.
  40. Yoshida, M., Shiojima, I., Ikeda, H. and Komuro, I. (2009) Chronic doxorubicin cardiotoxicity is mediated by oxidative DNA damage-ATM-p53-apoptosis pathway and attenuated by pitavastatin through the inhibition of Rac1 activity. J. Mol. Cell. Cardiol. 47, 698-705.
  41. Zhang, Y. W., Shi, J., Li, Y. J. and Wei, L. (2009) Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Arch. Immunol. Ther. Exp. (Warsz.) 57, 435-445.

Cited by

  1. sFRP1 has a biphasic effect on doxorubicin-induced cardiotoxicity in a cellular location-dependent manner in NRCMs and Rats pp.1432-0738, 2018,
  2. Particulate Matter 2.5 Mediates Cutaneous Cellular Injury by Inducing Mitochondria-Associated Endoplasmic Reticulum Stress: Protective Effects of Ginsenoside Rb1 vol.8, pp.9, 2017,
  3. Paeonol Reverses Adriamycin Induced Cardiac Pathological Remodeling through Notch1 Signaling Reactivation in H9c2 Cells and Adult Zebrafish Heart vol.33, pp.2, 2017,
  4. Ginsenoside Rb 1: A novel therapeutic agent in Staphylococcus aureus-induced Acute Lung Injury with special reference to Oxidative stress and Apoptosis vol.143, pp.None, 2017,
  5. Cardiotoxicity of doxorubicin-based cancer treatment: What is the protective cognition that phytochemicals provide us? vol.160, pp.None, 2017,
  6. CYP1B1 as a therapeutic target in cardio-oncology vol.134, pp.21, 2017,
  7. Ginsenoside Rb1 protects from Staphylococcus aureus-induced oxidative damage and apoptosis through endoplasmic reticulum-stress and death receptor-mediated pathways vol.219, pp.None, 2017,
  8. Nuclear Receptors in Myocardial and Cerebral Ischemia-Mechanisms of Action and Therapeutic Strategies vol.22, pp.22, 2017,