• Title/Summary/Keyword: caspase-7

Search Result 446, Processing Time 0.028 seconds

Induction of Apoptosis in HT-29 Human Colon Cancer Cells by the Pepper Component Piperine (후추의 주요 성분인 Piperine의 대장암세포 세포사멸 유도 효과)

  • Kim, Eun-Ji;Park, Hee-Sook;Shin, Min-Jeong;Shin, Hyun-Kyung;YoonPark, Jung-Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.4
    • /
    • pp.442-450
    • /
    • 2009
  • Piperine is an alkaloid-amine found in pepper and has been reported to have anticarcinogenic properties. To explore the possibility that piperine has cancer chemopreventive and chemotherapeutic effects in colon cancer, we examined whether piperine inhibits the growth of HT-29 human colon cancer cells and investigated the mechanisms for this effect. Cells were cultured with various concentrations ($0{\sim}40{\mu}M$) of piperine. Piperine decreased the cell viability and induced apoptosis of HT-29 cells. Western blot analysis of total cell lysates revealed that piperine decreases the protein levels of Bcl-2, Mcl-1, and intact Bid but increases Bik levels. Piperine increased the percentage of cells with depolarized mitochondrial membrane, and the release of cytochrome c into cytoplasm. Piperine induced the cleavage of poly (ADP-ribose) polymerase and caspases 8, 9, 7, and 3 and increased the Fas levels. In addition, piperine significantly decreased the protein levels of survivin. The present results indicate that piperine inhibits the growth of HT-29 colon cancer cells by the induction of apoptosis, which may be mediated by its ability to change the Bcl-2 family proteins, increase the activation of caspases, and decrease survivin levels. Overall, our findings suggest that piperine has cancer chemotherapeutic effects in colon cancer.

Isolation and Identification of Pheophytin, a Photosensitizer from Nostoc commune that Induces Apoptosis in Leukemia and Cancer Cells (Nostoc commune으로부터 백혈병세포와 간암세포에 대한 apoptosis 유도 광과민성물질 pheophytin a의 분리 및 구조동정)

  • Park, Jae-Eun;Lee, Jun-Young;Lee, Min-Woo;Jang, Eun-Jin;Hong, Chang-Oh;Kim, Keun Ki
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1321-1331
    • /
    • 2018
  • The aim of this study was to separate the photosensitizer that induces apoptosis of U937 and SK-HEP-1 cells from Nostoc commune. Dried N. commune was extracted with $CH_2Cl_2/MeOH$ (1:1) to separate the photosensitizer using various chromatographic techniques. The isolated compound was identified as pheophytin a ($C_{55}H_{74}N_4O_5$) with a molecular weight of 870. Its photodynamic activities were assessed under different irradiation conditions (light and non-light) at the same concentration range of $1.15-23.0{\mu}M$. The apoptosis inducing activity in U937 or SK-HEP-1 cells appeared only in the light. The mechanisms underlying the pheophytin a-mediated photodynamic inhibition of cancer cells were further investigated by examining cell morphology changes, cytotoxicity, caspase-3/7 activity, fluorescence staining, flow cytometry analysis, and DNA fragmentation in these two cell lines. The positive control and the light irradiation group showed typical apoptotic responses, including morphological changes, cytotoxicity, caspase activity, nucleus shrinkage owing to chromatin condensation, DNA laddering, and the presence of apoptotic bodies. Cytotoxicity markedly increased in a dose-dependent manner after a 12 hr exposure. Caspase-3/7 activity was higher in U937 cells than in SK-HEP-1 cells. Apoptosis induction therefore appeared to be both concentration- and light-dependent. In conclusion, pheophytin a, isolated from the blue green alga N. commune, had a photodynamic apoptosis-inducing effect on U937 and SK-HEP-1 cells. The findings reported here can be used as basic data for the development of next-generation photosensitizers from N. commune.

Effect of treadmill exercise on apoptosis in the retinas of streptozotocin-induced diabetic rats (트레드밀 운동이 streptozotocin에 의해 유발된 당뇨 쥐의 망막 신경세포 사멸에 미치는 영향)

  • Kim, D.Y.;Jung, S.Y.;Kim, T.W.;Sung, Y.H.
    • Exercise Science
    • /
    • v.21 no.3
    • /
    • pp.289-298
    • /
    • 2012
  • In the present study, we investigated the effect of treadmill exercise on apoptotic neuronal cell death in the retinas of streptozotocin-induced diabetic rats. Twenty-eight male Sprague-Dawley rats were used for this study. The animals were divided into four groups(n = 7 in each group):(1) control group, (2) exercise group, (3) diabetes-induced group, (4) diabetes-induced and exercise group. Diabetes mellitus(DM) was induced by intraperitoneal injection of streptozotocin. The rats in the exercise groups were forced to run on the treadmill for 30 minutes once a day, five times per a week, during 12 weeks. In this study, a terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL) assay and western blot for the expressions of caspase-3, cytochrome c, Bax, and Bcl-2 in the retinas were conducted for the detection of apoptotic retinal cell death. The present results showed that the number of TUNEL-positive cells was increased in the retinas of the diabetic rats, whereas treadmill exercise suppressed this number. The expressions of pro-apoptotic factors caspase-3, cytochrome c, and Bax were enhanced and the expressions of anti-apoptotic factor Bcl-2 was decreased in the retinas of the diabetic rats. In contrast, treadmill exercise suppressed the expressions of caspase-3, cytochrome c, and Bax and increased the expression of Bcl-2. The present study demonstrated that treadmill exercise suppressed diabetes-induced apoptotic neuronal cell death in the retinas. Based on the present results, treadmill exercise may be effective therapeutic strategy for the alleviating complications of diabetes patients.

Involvement of Transient Receptor Potential Melastatin 7 Channels in Sophorae Radix-induced Apoptosis in Cancer Cells - Sophorae Radix and TRPM7 -

  • Kim, Byung-Joo
    • Journal of Pharmacopuncture
    • /
    • v.15 no.3
    • /
    • pp.31-38
    • /
    • 2012
  • Sophorae Radix (SR) plays a role in a number of physiologic and pharmacologic functions in many organs. Objective: The aim of this study was to clarify the potential role for transient receptor potential melastatin 7 (TRPM7) channels in SR-inhibited growth and survival of AGS and MCF-7 cells, the most common human gastric and breast adenocarcinoma cell lines. Methods: The AGS and the MCF-7 cells were treated with varying concentrations of SR. Analyses of the caspase-3 and - 9 activity, the mitochondrial depolarization and the poly (ADPribose) polymerase (PARP) cleavage were conducted to determine if AGS and MCF-7 cell death occured by apoptosis. TRPM7 channel blockers ($Gd^{3+}$ or 2-APB) and small interfering RNA (siRNA) were used in this study to confirm the role of TRPM7 channels. Furthermore, TRPM7 channels were overexpressed in human embryonic kidney (HEK) 293 cells to identify the role of TRPM7 channels in AGS and MCF-7 cell growth and survival. Results: The addition of SR to a culture medium inhibited AGS and MCF-7 cell growth and survival. Experimental results showed that the caspase-3 and -9 activity, the mitochondrial depolarization, and the degree of PARP cleavage was increased. TRPM7 channel blockade, either by $Gd^{3+}$ or 2-APB or by suppressing TRPM7 expression with small interfering RNA, blocked the SR-induced inhibition of cell growth and survival. Furthermore, TRPM7 channel overexpression in HEK 293 cells exacerbated SR-induced cell death. Conclusions: These findings indicate that SR inhibits the growth and survival of gastric and breast cancer cells due to a blockade of the TRPM7 channel activity. Therefore, TRPM7 channels may play an important role in the survival of patients with gastric and breast cancer.

Resveratrol and clofarabine induces a preferential apoptosis-activating effect on malignant mesothelioma cells by Mcl-1 down-regulation and caspase-3 activation

  • Lee, Yoon-Jin;Lee, Yong-Jin;Lee, Sang-Han
    • BMB Reports
    • /
    • v.48 no.3
    • /
    • pp.166-171
    • /
    • 2015
  • We previously demonstrated that resveratrol and clofarabine elicited a marked cytotoxicity on malignant mesothelioma (MM) MSTO-211H cells but not on the corresponding normal mesothelial MeT-5A cells. Little is known of the possible molecules that could be used to predict preferential chemosensitivity on MSTO-211H cells. Resveratrol and clofarabine induced downregulation of Mcl-1 protein level in MSTO-211H cells. Treatment of cells with cycloheximide in the presence of proteasome inhibitor MG132 suggested that Mcl-1 protein levels were regulated at the post-translational step. The siRNA-based knockdown of Mcl-1 in MSTO-211H cells triggered more growth-inhibiting and apoptosis-inducing effects with the resultant cleavages of procaspase-3 and its substrate PARP, increased caspase-3/7 activity, and increased percentage of apoptotic propensities. However, the majority of the observed changes were not shown in MeT-5A cells. Collectively, these studies indicate that the preferential activation of caspase cascade in malignant cells might have important applications as a therapeutic target for MM.

Effects of Schisandra Chinensis on Human Breast Cancer Cells (오미자의 유방암 세포사멸과 TRPM7 관련성에 관한 연구)

  • Kim, Jung Nam;Chae, Han;Kwon, Young Kyu;Kim, Byung Joo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.2
    • /
    • pp.162-168
    • /
    • 2014
  • Fruits of Schisandra chinensis (SC) Baill are considered a traditional herbal medicine for the treatment and alleviation of various diseases. The purpose of this study was to investigate the anti-cancer effects of SC extract in human breast adenocarcinoma cells (MCF-7). We used human breast adenocarcinoma cell line, MCF-7 cells. We examined cell death by MTT assay and caspase 3 and 9 assay with SC extract. To examine the inhibitory effects of SC extract, cell cycle (sub G1) analysis and mitochondrial membrane depolarization was done the MCF-7 cells after one day with SC extract. In addition, to investigate the transient receptor potential melastatin 7 (TRPM7) currents, we used the whole cell patch clamp techniques. Furthermore, TRPM7 channels were overexpressed in human embryonic kidney (HEK) 293 cells to identify the role of TRPM7 channels in MCF-7 cell growth and survival. SC extract inhibited the growth of MCF-7 cells in a dose-dependent fashion. Also we showed that SC extract induced apoptosis in MCF-7 cells by MTT assay, caspase 3 and 9 assay, sub-G1 analysis and mitochondrial membrane depolarization. SC extract inhibited the TRPM7 currents in MCF-7 cells and in TRPM7 overexpressed HEK 293 cells. Furthermore, TRPM7 channel overexpression in HEK 293 cells exacerbated SC extract-induced cell death. Our findings provide insight into unraveling the effects of SC extract in human breast adenocarcinoma cells and developing therapeutic agents against breast cancer.

Glyceraldehyde-3-Phosphate, a Glycolytic Intermediate, Plays a Key Role in Controlling Cell Fate Via Inhibition of Caspase Activity

  • Jang, Mi;Kang, Hyo Jin;Lee, Sun Young;Chung, Sang J.;Kang, Sunghyun;Chi, Seung Wook;Cho, Sayeon;Lee, Sang Chul;Lee, Chong-Kil;Park, Byoung Chul;Bae, Kwang-Hee;Park, Sung Goo
    • Molecules and Cells
    • /
    • v.28 no.6
    • /
    • pp.559-563
    • /
    • 2009
  • Glyceraldehyde-3-phosphate is a key intermediate in several central metabolic pathways of all organisms. Aldolase and glyceraldehyde-3-phosphate dehydrogenase are involved in the production or elimination of glyceraldehyde-3-phosphate during glycolysis or gluconeogenesis, and are differentially expressed under various physiological conditions, including cancer, hypoxia, and apoptosis. In this study, we examine the effects of glyceraldehyde-3-phosphate on cell survival and apoptosis. Overexpression of aldolase protected cells against apoptosis, and addition of glyceraldehyde-3-phosphate to cells delayed apoptosis. Additionally, delayed apoptotic phenomena were observed when glyceraldehyde-3-phosphate was added to a cell-free system, in which artificial apoptotic process was induced by adding dATP and cytochrome c. Surprisingly, glyceraldehyde-3-phosphate directly suppressed caspase-3 activity in a reversible noncompetitive mode, preventing caspase-dependent proteolysis. Based on these results, we suggest that glyceraldehyde-3-phosphate, a key molecule in several central metabolic pathways, functions as a molecule switch between cell survival and apoptosis.

Dryocrassin ABBA Induces Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells Through a Caspase-Dependent Mitochondrial Pathway

  • Jin, Zhe;Wang, Wen-Fei;Huang, Jian-Ping;Wang, He-Meng;Ju, Han-Xun;Chang, Ying
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1823-1828
    • /
    • 2016
  • Background: Biological and pharmacological activities of dryocrassin ABBA, a phloroglucinol derivative extracted from Dryopteris crassirhizoma, have attracted attention. In this study, the apoptotic effect of dryocrassin ABBA on human hepatocellular carcinoma HepG2 cells was investigated. Materials and Methods: We tested the effects of dryocrassin ABBA on HepG2 in vitro by MTT, flow cytometry, real-time PCR, and Western blotting. KM male mice were used to detect the effect of dryocrassin ABBA on H22 cells in vivo. Results: Dryocrassin ABBA inhibited the growth of HepG2 cells in a concentration-dependent manner. After treatment with 25, 50, and $75{\mu}g/mL$ dryocrassin ABBA, the cell viability was 68%, 60% and 49%, respectively. Dryocrassin ABBA was able to induce apoptosis, measured by propidium iodide (PI)/annexin V-FITC double staining. The results of real-time PCR and Western ting showed that dryocrassin ABBA up-regulated p53 and Bax expression and inhibited Bcl-2 expression which led to an activation of caspase-3 and caspase-7 in the cytosol, and then induction of cell apoptosis. In vivo experiments also showed that dryocrassin ABBA treatment significantly suppressed tumor growth, without major side effects. Conclusions: Overall, these findings provide evidence that dryocrassin ABBA may induce apoptosis in human hepatocellular carcinoma cells through a caspase-mediated mitochondrial pathway.

Amoebic PI3K and PKC Is Required for Jurkat T Cell Death Induced by Entamoeba histolytica

  • Lee, Young Ah;Kim, Kyeong Ah;Min, Arim;Shin, Myeong Heon
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.4
    • /
    • pp.355-365
    • /
    • 2014
  • The enteric protozoan parasite Entamoeba histolytica is the causative agent of human amebiasis. During infection, adherence of E. histolytica through Gal/GalNAc lectin on the surface of the amoeba can induce caspase-3-dependent or -independent host cell death. Phosphorylinositol 3-kinase (PI3K) and protein kinase C (PKC) in E. histolytica play an important function in the adhesion, killing, or phagocytosis of target cells. In this study, we examined the role of amoebic PI3K and PKC in amoeba-induced apoptotic cell death in Jurkat T cells. When Jurkat T cells were incubated with E. histolytica trophozoites, phosphatidylserine (PS) externalization and DNA fragmentation in Jurkat cells were markedly increased compared to those of cells incubated with medium alone. However, when amoebae were pretreated with a PI3K inhibitor, wortmannin before being incubated with E. histolytica, E. histolytica-induced PS externalization and DNA fragmentation in Jurkat cells were significantly reduced compared to results for amoebae pretreated with DMSO. In addition, pretreatment of amoebae with a PKC inhibitor, staurosporine strongly inhibited Jurkat T cell death. However, E. histolytica-induced cleavage of caspase-3, -6, and -7 were not inhibited by pretreatment of amoebae with wortmannin or staurosporin. In addition, we found that amoebic PI3K and PKC have an important role on amoeba adhesion to host compartment. These results suggest that amebic PI3K and PKC activation may play an important role in caspase-independent cell death in Entamoeba-induced apoptosis.

Apoptotic Effects and Mechanism Study of Scopoletin in HepG2 Cells (Scopoletin의 간암세포에 대한 고사 유도 효과 및 기전 연구)

  • Kwon Kang-Beom;Kim Eun-Kyung;Park Sung-Joo;Song Ho-Joon;Lee Young-Rae;Park Byung-Hyun;Park Jin-Woo;Ryu Do-Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.6
    • /
    • pp.1594-1598
    • /
    • 2005
  • Scopoletin (6-methoxy-7-hydrorycournarin) is a phenolic coumarin and a member of the phytoalexins. In this study we investigated whether scopoletin causes apoptosis in human hepatoma HepG2 cells and, if so, by what mechanisms. We report that scopoletin induced apoptosis as confirmed by a chromatin condensation. The signal cascade acivated by scopoletin included the activation of caspase-3 as evidenced by increased pretense activity. Activation of caspase-3 resulted in the cleavage of 116 kDa poly(ADP-ribose) polymerase (PARP) to 85 kDa cleavage product in a dose-dependent fashion. Also, scopoletin-induced apoptotic mechanism of HepG2 cells involved the generation of hydrogen peroxide. Taken together, these results suggest that scopgletin induces hydrogen peroxide generation, which, in turn, causes activation of caspase-3, degradation of PARP, and eventually leads to apoptotic cell death in HepG2 cells.