• Title/Summary/Keyword: caspase-6

Search Result 535, Processing Time 0.034 seconds

Expression of the Pro-Domain-Deleted Active Form of Caspase-6 in Escherichia coli

  • Lee, Phil Young;Cho, Jin Hwa;Chi, Seung Wook;Bae, Kwang-Hee;Cho, Sayeon;Park, Byoung Chul;Kim, Jeong-Hoon;Park, Sung Goo
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.719-723
    • /
    • 2014
  • Caspases are a family of cysteine proteases that play an important role in the apoptotic pathway. Caspase-6 is an apoptosis effector that cleaves a variety of cellular substrates. The active form of the enzyme is required for use in research. However, it has been difficult to obtain sufficient quantities of active caspase-6 from Escherichia coli. In the present study, we constructed a caspase-6 with a 23-amino-acid deletion in the pro-domain. This engineered enzyme was expressed as a soluble protein in E. coli and was purified using affinity resin. In vitro enzyme assay and cleavage analysis revealed that the engineered active caspase-6 protein had characteristics similar to those of wild-type caspase-6. This novel method can be a valuable tool for obtaining active caspase-6 that can be used for screening caspase-6-specific substrates, which in turn can be used to elucidate the function of caspase-6 in apoptosis.

Identification of Novel Binding Partners for Caspase-6 Using a Proteomic Approach

  • Jung, Ju Yeon;Lee, Su Rim;Kim, Sunhong;Chi, Seung Wook;Bae, Kwang-Hee;Park, Byoung Chul;Kim, Jeong-Hoon;Park, Sung Goo
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.714-718
    • /
    • 2014
  • Apoptosis is the process of programmed cell death executed by specific proteases, the caspases, which mediate the cleavage of various vital proteins. Elucidating the consequences of this endoproteolytic cleavage is crucial to understanding cell death and other related biological processes. Although a number of possible roles for caspase-6 have been proposed, the identities and functions of proteins that interact with caspase-6 remain uncertain. In this study, we established a cell line expressing tandem affinity purification (TAP)-tagged caspase- 6 and then used LC-MS/MS proteomic analysis to analyze the caspase-6 interactome. Eight candidate caspase-6-interacting proteins were identified. Of these, five proteins (hnRNP-M, DHX38, ASPP2, MTA2, and UACA) were subsequently examined by co-immunoprecipitation for interactions with caspase-6. Thus, we identified two novel members of the caspase-6 interactome: hnRNP-M and MTA2.

Effect of Hypoxia on the Signal Transduction of Apoptosis in Osteoblasts (저산소 상태에서 조골세포 고사의 신호전달 기전)

  • Park, Young-Joo;Oh, Soh-Taek;Kang, Kyung-Hwa;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.33 no.6 s.101
    • /
    • pp.453-463
    • /
    • 2003
  • Mammalian cell is critically dependent on a continuous supply of oxygen. Even brief periods of oxygen deprivation can result in profound cellular damage. The aim of this study was to examine the possible mechanism of apoptosis in response to hypoxia in MC3T3E1 osteoblasts. MC3T3El osteoblasts under hypoxic conditions ($2\%$ oxygen) resulted in apoptosis in a time-dependent manner, determined by DNA fragmentation assay and nuclear morphology, stained with fluorescent dye (Hoechst 33258) Pretreatment with Z-VAD-FMK, a pancaspase inhibitor, or Z-DEVD-CHO, a specific caspase-3 inhibitor, suppressed the DNA ladder in response to hypoxia in a concentration dependent manner. An increase in caspase-3-like protease (DEVDase) activity was observed during apoptosis, but no caspase-l activity (YVADase) was detected. To confirm what caspases were involved in apoptosis, western blot analysis was performed using an anticaspase-3 or 6 antibody. The 17-kDa protein, that corresponds to the active products of caspase-3 and the 20-kDa protein of the active protein of caspase-6 were generated in hypoxia-challenged lysates, in which the full length forms of caspase-3 and 6 were evident. With a time course similar to caspase-3 and 6 activation, hypoxic stress also caused the cleavage of Lamin A, typical of caspase-6 activity. In addition, the hypoxic stress elicited the release of cytochrome c into the cytosol during apoptosis. These findings suggested that the activation of caspases accompanied by a cytochrome c release in response to hypoxia was involved in apoptotic cell death in MC3T3E1 osteoblasts.

Regulation of Caspase Activity During Apoptosis Induced by Baicalein in HL60 Human Leukemia Cell Line

  • Byun, Boo-Hyeong;Kim, Bu-Yeo
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1305-1309
    • /
    • 2008
  • Baicalein, one of the major flavonoid in Scutellaria baicalensis, has been known for its effects on proliferation and apoptosis of many tumor cell lines. Most biological effects of baicalein are thought to be from its antioxidant and prooxidant activities. In this report, baicalein was found to induce apoptosis in HL60 human promyelocytic leukemia cell line. Baicalein treatment induced DNA fragmentation and typical morphological features of apoptosis. To elucidate the mechanism of baicalein-induced apoptosis, the activities of the members of caspase family were measured. Interestingly caspase 2, 3, and 6 were significantly activated whereas caspase 1, 8, and 9 were not activated, suggesting selective involvement of specific caspases. Further, treatment with caspase inhibitors also supports the involvement of caspase 2 in apoptosis process. Although it has been reported that baicalein can induce apoptosis through many caspase pathways, the present study indicates that caspase 2 not caspase 9 pathway may be the important step in apoptosis on HL60 cell line.

A Natural L-Arginine Analog, L-Canavanine-Induced Apoptosis is Suppressed by Protein Tyrosine Kinase p56lck in Human Acute Leukemia Jurkat T Cells (인체 급성백혈병 Jurkat T 세포에 있어서 L-canavanine에 의해 유도되는 세포자살기전에 미치는 단백질 티로신 키나아제 p56lck의 저해 효과)

  • Park, Hae-Sun;Jun, Do-Youn;Woo, Hyun-Ju;Rue, Seok-Woo;Kim, Sang-Kook;Kim, Kyung-Min;Park, Wan;Moon, Byung-Jo;Kim, Young-Ho
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1529-1537
    • /
    • 2009
  • To elucidate further the antitumor effects of a natural L-arginine analogue, L-canavanine, the mechanism underlying apoptogenic activity of L-canavanine and its modulation by protein tyrosine kinase $p56^{lck}$ was investigated in human Jurkat T cells. When the cells were treated with 1.25 to 2.5 mM L-canavanine for 36 h, several apoptotic events including mitochondrial membrane potential (${\Delta\Psi}m$) loss, activation of caspase-9, -3, -8, and -7, poly (ADP-ribose) polymerase (PARP) degradation, and DNA fragmentation were induced without alteration in the levels of Fas or FasL. These apoptotic changes were more significant in $p56^{lck}$-deficient Jurkat clone JCaM1.6 than in $p56^{lck}$-positive Jurkat clone E6.1. The L-canavanine-induced apoptosis observed in $p56^{lck}$-deficient JCaM1.6 cells was significantly reduced by introducing $p56^{lck}$ gene into JCaM1.6 cells by stable transfection. Treatment of JCaM1.6/lck cells with L-canavanine caused a transient 1.6-fold increase in the kinase activity of $p56^{lck}$. Both FADD-positive wild-type Jurkat T cell clone A3 and FADD-deficient Jurkat T cell clone I2.1 exhibited a similar susceptibility to the cytotoxicity of L-canavanine, excluding involvement of Fas/FasL system in triggering L-canavanine-induced apoptosis. The L-canavanine-induced apoptotic sub-$G_1$ peak and activation of caspase-3, -8, and -7 were abrogated by pan-caspase inhibitor (z-VAD-fmk), whereas L-canavanine-induced activation of caspase-9 was not affected. These results demonstrated that L-canavanine caused apoptosis of Jurkat T cells via the loss of ${\Delta\Psi}m$, and the activation of caspase-9, -3, -8, and -7, leading to PARP degradation, and that the $p56^{lck}$ kinase attenuated the ${\Delta\Psi}m$ loss and activation of caspases, and thus contributed as a negative regulator to L-canavanine-induced apoptosis.

Biochemical Changes in the Tissue of Mice Irradiated with LINAC (선형가속기를 이용한 방사선조사에서 생쥐조직의 생화학적 변화)

  • Choi, Seong-Kwan
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.3
    • /
    • pp.661-666
    • /
    • 2016
  • In this study, a linear accelerator (LINAC) through 3 Gy of radiation per body irradiated mice of the small intestine and the liver to produce in order to protect the cells after radiation exposure that caspase (caspase 3 &caspase 9) and NO (nitric oxide), and looked like to know cytokine of IL-6 and TNF-${\alpha}$, the result is as follows. First, caspase 3 & caspase 9 showed a noticeable increase in the radiation group than in the control group both small intestine and liver tissues (P <0.001). Second, NO are both intestine and liver tissue showed a marked increase in the radiation group than in the control group (P <0.001). Third, one of Cytokine IL-6 and TNF-${\alpha}$ showed a significant increase in the irradiated group than the control group both small intestine and liver tissues (P <0.001).

Identification of the novel substrates for caspase-6 in apoptosis using proteomic approaches

  • Cho, Jin Hwa;Lee, Phil Young;Son, Woo-Chan;Chi, Seung-Wook;Park, Byoung Chul;Kim, Jeong-Hoon;Park, Sung Goo
    • BMB Reports
    • /
    • v.46 no.12
    • /
    • pp.588-593
    • /
    • 2013
  • Apoptosis, programmed cell death, is a process involved in the development and maintenance of cell homeostasis in multicellular organisms. It is typically accompanied by the activation of a class of cysteine proteases called caspases. Apoptotic caspases are classified into the initiator caspases and the executioner caspases, according to the stage of their action in apoptotic processes. Although caspase-3, a typical executioner caspase, has been studied for its mechanism and substrates, little is known of caspase-6, one of the executioner caspases. To understand the biological functions of caspase-6, we performed proteomics analyses, to seek for novel caspase-6 substrates, using recombinant caspase-6 and HepG2 extract. Consequently, 34 different candidate proteins were identified, through 2-dimensional electrophoresis/MALDI-TOF analyses. Of these identified proteins, 8 proteins were validated with in vitro and in vivo cleavage assay. Herein, we report that HAUSP, Kinesin5B, GEP100, SDCCAG3 and PARD3 are novel substrates for caspase-6 during apoptosis.

Neonatal Rat Necrotizing Enterocolitis Model Adopting Oral Endotoxin and Hypoxia Exhibits Increased Apoptosis through Caspase-3 Activation (경구 내독소와 저산소로 유발된 신생쥐의 괴사성 장염모델에서 caspase-3 활성화를 통한 세포자멸사의 증가)

  • Lee, Yun-Kyoung;Kim, Ee-Kyung;Kim, Ji-Eun;Kim, Yoon-Joo;Son, Se-Hyung;Kim, Han-Suk;Kim, Beyong-Il;Choi, Jung-Hwan
    • Neonatal Medicine
    • /
    • v.17 no.1
    • /
    • pp.44-52
    • /
    • 2010
  • Purpose : The aim of this study was to develop a model for necrotizing enterocolitis (NEC) in the neonatal rat using endotoxin and hypoxia, a plausible insult in a neonatal intensive care and to investigate the role of apoptosis as the underlying mechanism. Methods : Newborn rats were given oral endotoxin and intermittent 8% hypoxia$\pm$caspase inhibitor. The intestinal histology was evaluated using hematoxylin-eosin staining. Apoptosis was analyzed with TUNEL staining and by measuring the caspase 3 activity in the intestinal lysates. IEC-6 cells were assessed for apoptosis and the expression of Bax, Bcl-2, Fas and FasL was measured after treatment with endotoxin and hypoxia. Results : Oral endotoxin (5 mg/kg) and exposure to 8% hypoxia of 60-min duration twice induced human NEC-like lesions in the rat intestine. Intestinal tissue revealed increased apoptosis and caspase-3 activity. After caspase inhibitor treatment, the grades of both apoptosis and NEC were significantly reduced. IEC-6 cells exhibited increased apoptosis and caspase 3 activity after endotoxin and hypoxia treatment and significantly increased Bax/Bcl- 2 ratio compared to control cells. Conclusion : This neonatal rat model of NEC which was induced by oral endotoxin and intermittent hypoxia showed increased apoptosis of intestinal epithelial cells that was mediated by caspase 3 activation. Our model has a advantage in the study of NEC because the use of much more clinically plausible insults may provide a suitable model for the investigation of its pathophysiology and therapeutic trials.

S-allylcysteine-mediated Activation of Caspases and Inactivation of PARP to Inhibit Proliferation of HeLa (S-allylcysteine 매개 caspases의 활성화 및 PARP의 불활성화를 통한 HeLa 세포주의 증식 억제효과)

  • Kim, Hyun Hee;Kong, Il-Keun;Min, Gyesik
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.164-171
    • /
    • 2017
  • Our previous study suggested that S-allylcysteine (SAC) inhibits the proliferation of the human cervical cancer cell line, HeLa, at least in part through the induction of apoptosis and cell cycle arrest. To further analyze the specific molecular mechanism(s) by which SAC mediates its antiproliferative effects, this study examined the role of SAC in regulating the protein expression of initiator caspase (caspase-9), effector caspases (caspase-3 and caspase-7), and poly-ADP-ribose polymerase (PARP) in HeLa. Western blot analysis showed that when cells were treated with 50 mM SAC for 48 hr, the expression of procaspase-3, -7, and -9 and PARP was reduced by 94%, 38%, 95%, and 64%, respectively, as compared to the untreated control. In contrast, the expression of caspase-3, -7, and -9 and cleaved-PARP was markedly increased by SAC treatment. The SAC-mediated changes in the expression of these proteins were correlated with the concomitant inhibition of cellular proliferation by SAC. The cell proliferation assay showed that HeLa treatment with more than 20 mM SAC for 6-48 hr resulted in both concentration- and time-dependent inhibition of cellular proliferation. These results indicate that the SAC-induced antiproliferative effect in HeLa may be mediated at least in part through the activation of caspase-9, followed by the activation of caspase-3 and caspase-7 as well as the inactivation of PARP, thus leading to cellular apoptosis.