Browse > Article
http://dx.doi.org/10.5483/BMBRep.2013.46.12.081

Identification of the novel substrates for caspase-6 in apoptosis using proteomic approaches  

Cho, Jin Hwa (Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB))
Lee, Phil Young (Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB))
Son, Woo-Chan (Asan Institute for Life Sciences, Asan Medical Center)
Chi, Seung-Wook (Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB))
Park, Byoung Chul (Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB))
Kim, Jeong-Hoon (Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB))
Park, Sung Goo (Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB))
Publication Information
BMB Reports / v.46, no.12, 2013 , pp. 588-593 More about this Journal
Abstract
Apoptosis, programmed cell death, is a process involved in the development and maintenance of cell homeostasis in multicellular organisms. It is typically accompanied by the activation of a class of cysteine proteases called caspases. Apoptotic caspases are classified into the initiator caspases and the executioner caspases, according to the stage of their action in apoptotic processes. Although caspase-3, a typical executioner caspase, has been studied for its mechanism and substrates, little is known of caspase-6, one of the executioner caspases. To understand the biological functions of caspase-6, we performed proteomics analyses, to seek for novel caspase-6 substrates, using recombinant caspase-6 and HepG2 extract. Consequently, 34 different candidate proteins were identified, through 2-dimensional electrophoresis/MALDI-TOF analyses. Of these identified proteins, 8 proteins were validated with in vitro and in vivo cleavage assay. Herein, we report that HAUSP, Kinesin5B, GEP100, SDCCAG3 and PARD3 are novel substrates for caspase-6 during apoptosis.
Keywords
Apoptosis; Caspase-6; Degradomics; Proteomic screening; Substrate;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lee, A. Y., Park, B. C., Jang, M., Cho, S., Lee, D. H., Lee, S. C., Myung, P. K. and Park, S. G. (2004). Identification of caspase-3 degradome by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics 4, 3429-3436.   DOI   ScienceOn
2 Jang, M., Park, B. C., Kang, S., Lee, D. H., Cho, S., Lee, S. C., Bae, K. H. and Park, S. G. (2008) Mining of caspase-7 substrates using a degradomic approach. Mol. Cells. 26, 152-157.
3 Crawford, E. D. and Wells, J. A. (2011) Caspase substrates and cellular remodeling. Annu. Rev. Biochem. 80, 1055-1087.   DOI   ScienceOn
4 Lamkanfi, M., Declercq, W., Kalai, M., Saelens, X. and Vandenabeele, P. (2002) Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death Differ. 9, 358-361.   DOI   ScienceOn
5 Takahashi, A., Alnemri, E. S., Lazebnik, Y. A., Fernandes-Alnemri, T. Litwack, G., Moir, R. D., Goldman, R. D., Poirier, G. G., Kaufmann, S. H. and Earnshaw, W. C. (1996) Cleavage of lamin A by $Mch2\alpha$ but not CPP32: Multiple interleukin $1\beta$-converting enzyme-related proteases with distinct substrate recognition properties are active in apoptosis. Proc. Natl. Acad. Sci. U. S. A. 93, 8395-8400.   DOI   ScienceOn
6 Galande, S., Dickinson, L. A., Mian, I. S., Sikorska, M. and Kohwi-Shigematsu, T. (2001) SATB1 cleavage by caspase 6 disrupts PDZ domain-mediated dimerization, causing detachment from chromatin early in T-cell apoptosis. Mol. Cell Biol. 21, 5591-5604.   DOI   ScienceOn
7 Graham, R. K., Deng, Y., Slow, E. J., Haigh, B., Bissada, N., Lu, G., Pearson, J., Shehadeh, J., Bertram, L., Murphy, Z., Warby, S. C., Doty, C. N., Roy, S., Wellington, C. L., Leavitt, B. R., Raymond, L. A., Nicholson, D. W. and Hayden, M. R. (2006) Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell 125, 1179-1191.   DOI   ScienceOn
8 Pellegrini, L., Passer, B. J., Tabaton, M., Ganjei, J. K. and D'Adamio, L. (1999) Alternative, non-secretase processing of Alzheimer's beta-amyloid precursor protein during apoptosis by caspase-6 and -8. J. Biol.Chem. 274, 21011-21016.   DOI
9 van de Craen, M., de Jonghe, C., van den Brande, I., Declercq, W., van Gassen, G., van Criekinge, W., Vanderhoeven, I., Fiers, W., van Broeckhoven, C., Hendriks, L. and Vandenabeele, P. (1999) Identification of caspases that cleave presenilin-1 and presenilin-2. Five presenilin-1 (PS1) mutations do not alter the sensitivity of PS1 to caspases. FEBS Lett. 445, 149-154.   DOI   ScienceOn
10 Inoue, S., Browne, G., Melino, G. and Cohen, G. M. (2009) Ordering of caspases in cells undergoing apoptosis by the intrinsic pathway. Cell Death Differ. 16, 1053-1061.   DOI   ScienceOn
11 Allsopp, T. E., McLuckie, J., Kerr, L. E., Macleod, M., Sharkey, J. and Kelly, J. S. (2000) Caspase 6 activity initiates caspase 3 activation in cerebellar granule cell apoptosis. Cell Death Differ. 7, 984-993.   DOI
12 Cowling, V. and Downward, J. (2002) Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis pathway: absolute requirement for removal of caspase-6 prodomain. Cell Death Differ. 9, 1046-1056.   DOI   ScienceOn
13 Li, M., Chen, D., Shiloh, A., Lou, J., Nikolaev, A. Y., Qin, J. and Gu, W. (2002) Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416, 648-653.   DOI   ScienceOn
14 Son, Y. K., Hong, D. H., Kim, D., Firth, A. L. and Park, W. S. (2011) Direct effect of protein kinase C inhibitors on cardiovascular ion channels. BMB Rep. 44, 559-565.   과학기술학회마을   DOI   ScienceOn
15 Slee, E. A., Adrain, C. and Martin, S. J. (2001) Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J. Biol. Chem. 276, 7320-7326.   DOI   ScienceOn
16 Germain, M., Affar, E. B., D'Amours, D., Dixit, V. M., Salvesen, G. S. and Poirier, G. G. (1999) Cleavage of automodified poly(ADP-ribose) polymerase during apoptosis. Evidence for involvement of caspase-7. J. Biol. Chem. 274, 28379-28384.   DOI
17 Vugmeyster, Y., Borodovsky, A., Maurice, M. M., Maehr, R., Furman, M. H. and Ploegh, H. L. (2002) The ubiquitin-proteosome pathway in thymocyte apoptosis: caspase-dependent processing of the deubiquitinating enzyme USP (HAUSP). Mol. Immunol. 39, 431-441.   DOI   ScienceOn
18 Brady, S. T. (1985) A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317, 73-75.   DOI   ScienceOn
19 Machleidt, T., Geller, P., Schwandner, R., Scherer, G. and Kroenke, M. (1998) Caspase 7-induced cleavage of kinectin in apoptotic cells. FEBS Lett. 436, 51-54.   DOI   ScienceOn
20 Luthi, A. U. and Martin, S. J. (2007) The CASBAH: a searchable database of caspase substrates. Cell Death. Differ. 14, 641-650.   DOI   ScienceOn
21 Peter, M. E. and Krammer, P. H. (2003) The CD95 (APO-1/Fas) DISC and beyond. Cell Death Differ. 10, 26-35.   DOI   ScienceOn
22 Igarashi, Y., Eroshkin, A., Gramatikova, S., Gramatikoff, K., Zhang, Y., Smith, J. W., Osterman, A. L. and Godzik, A. (2007) CutDB: a proteolytic event database. Nucleic Acids Res. 35, D546-549.   DOI   ScienceOn
23 Ellis, R. E., Yuan, J. Y. and Horvitz, H. R. (1991) Mechanisms and functions of cell death. Annu. Rev. Cell Biol. 7, 663-698.   DOI   ScienceOn
24 Raff, M. C., Barres, B. A., Burne, J. F., Coles, H. S., Ishizaki, Y. and Jacobson, M. D. (1993) Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262, 695-700.   DOI
25 Alnemri, E. S., Livingston, D. J., Nicholson, D. W., Salvesen, G., Thornberry. N. A., Wong, W. W. and Yuan, J. (1996) Human ICE/CED-3 protease nomenclature. Cell 87, 171.   DOI   ScienceOn
26 Lavrik, I. N., Golks, A. and Krammer, P. H. (2005) Caspases: pharmacological manipulation of cell death. J. Clin. Invest. 115, 2665-2672.   DOI   ScienceOn
27 Thornberry, N. A., Rano, T. A., Peterson, E. P., Rasper, D. M., Timkey, T., Garcia-Calvo, M., Houtzaqer, V. M., Nordstrom, P. A., Roy, S., Vaillancourt, J. P., Chapman, K. T. and Nicholson, D. W. (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272, 17907-17911.   DOI   ScienceOn
28 Nicholson, D. W. (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 6, 1028-1042.   DOI   ScienceOn
29 Lee, E., Seo, J., Jeong, M., Lee, S. and Song, J. (2012) The roles of FADD in extrinsic apoptosis and necrosis. BMB Rep. 45, 496-508.   DOI   ScienceOn
30 Kwon, K. B., Kim, E. K., Shin, B. C., Seo, E. A., Yang, J. Y. and Ryu, D. G. (2003) Herba houttuyniae extract induces apoptotic death of human promyelocytic leukemia cells via caspase activation accompanied by dissipation of mitochondrial membrane potential and cytochrome c release. Exp. Mol. Med. 35, 91-97.   DOI   ScienceOn
31 Thornberry, N. A. and Lazebnik, Y. (1998) Caspases: enemies within. Science 281, 1312-1316.   DOI   ScienceOn
32 Lamkanfi, M. and Kanneqanti, T. D. (2010) Caspase-7: a protease involved in apoptosis and inflammation. Int. J. Biochem. Cell Biol. 42, 21-24.   DOI   ScienceOn
33 Giaime, E., Sunyach, C., Druon, C., Scarzello, S., Robert, G., Grosso, S., Auberger, P., Goldberg, M. S., Shen, J., Heutink, P., Pouyssegur, J., Paqes, G., Checler, F. and Alves da Costa, C. (2010) Loss of function of DJ-1 triggered by Parkinson's disease-associated mutation is due to proteolytic resistance to caspase-6. Cell Death Differ. 17, 158-169.   DOI   ScienceOn