• 제목/요약/키워드: caspase family

검색결과 209건 처리시간 0.024초

Anticancer Activity of Bispidinone Derivative by Induction of Apoptosis

  • Lee, Man Gi;Kwon, Ryong
    • 대한의생명과학회지
    • /
    • 제26권4호
    • /
    • pp.336-343
    • /
    • 2020
  • The present study was carried out to investigate the possibility that bispidinone derivative makes anticancer drug availability to human cervical carcinoma cell. The B8 has the lowest IC50 value among B8, B9 and B10 which are bispidinone analogue with bromide. According to cytotoxic test through WST-8 assay, B8 shows the most magnificent cytotoxicity effectiveness with 76 μM of IC50 value. In human cervical carcinoma cell treated with B8, it noticeably controlled cellular multiplication by increase of concentration and time. Furthermore, morphological changes like cellular shrink, disruption and nuclear condensation, feature of apoptosis, are observed. Annexin V-FITC/PI double staining assay test proved that B8 can cause apoptosis. Moreover, after treatment with 76 μM of B8, flow cytometry analysis shows that increase of active oxygen species are induced and membrane potential in mitochondria is decreased. Manifestation of Bcl-2 family and caspase cascades protein provides evidence that B8 induces apoptosis through mitochondria and caspase-related pathway. Taken together, we suggested that B8 reduced membrane potential in mitochondria and induce apoptosis through the pathway depended on mitochondria and caspase.

급성전골수성백혈병 HL-60 세포주에서 방사선조사에 의한 세포고사기전 (A Study on Apoptotic Signaling Pathway in HL-60 Cells Induced by Radiation)

  • 김혜정;문성근;이재훈;문성록
    • Radiation Oncology Journal
    • /
    • 제19권2호
    • /
    • pp.153-162
    • /
    • 2001
  • 목적 : 방사선 조사에 의하여 유발되는 세포고사의 신호전달기전, 특히 caspase계 cysteine protease의 활성화, Bcl2 및 Bax 단백질, cytochrome c의 세포질내로의 방출, Fas 와 Fas-L 단백질의 발현양상 등의 조사를 통하여 방사선 조사에 의하여 유발되는 세포고사기전을 규명하고자 하였다. 대상 및 방법 : HL-60 세포주에 6 MV의 X-선을 조사하고 세포생존율, Caspase의 활성도, $Bcl_2$ 및 Bax 단백질, cytochrome c의 세포질내로의 방출여부, 및 Fas 와 Fas-L 단백질의 발현양상을 조사하였다. 결과 : 방사선조사 후 세포의 생존율은 조사선량과 조사 후 시간경과에 따라 감소되었다. 세포고사의 특징인 사다리형 DNA 분절은 방사선조사 4시간 후부터 시간경과에 따라 증가하였으며, 조사선량이 증가할수록 더욱 현저하였다. 방사선조사 후 caspase계 cysteine proteases 중 caspase-2, 3, 6, 8 및 9의 활성화가 시간경과에 따라 증가하였으며, 16 Gy의 방사선량조사 4시간 후에 poly (ADP-ribosyl) polymerase (PARP)의 분절과 Western blot을 이용한 procaspase-3의 분절을 확인함으로서 caspase-3의 활성을 간접적으로 증명할 수 있었다. $Bcl_2$ 단백질은 방사선조사 후 시간경과에 따라 감소하였으며, Bax 단백질은 시간경과에 따라 발현이 증가하는 양상을 관찰할 수 있었다. 방사선조사 후 cytochrome c의 세포질내로의 방출을 확인하였다. 또한 Fas 및 Fas-L 단백질 모두 방사선조사 후 발현이 증가하는 양상을 관찰할 수 있었다. 결론 : HL-60 세포주에서 방사선 조사에 의해 유발되는 세포사멸이 세포고사기전에 의해서 매개됨을 확인하였으며, 이는 세포내 caspase계 cysteine proteases, $Bcl_2$, Bax, 세포질내로의 cytochrome c 방출 그리고 Fas, Fas-L가 관여하는 신호전달경로의 활성화에 의한 것임을 의미하였다.

  • PDF

Inhibitory Effect of S100A8 on Neutrophil Apoptosis by Cytokine Release of Normal and Allergic Monocytes

  • Lee, Ji-Sook
    • 대한의생명과학회지
    • /
    • 제26권3호
    • /
    • pp.226-229
    • /
    • 2020
  • S100A8 functions as an essential factor in inflammatory response. Cytokine release of monocytes and regulation of neutrophil apoptosis are important steps in pathogenesis of allergy. This study aims to examine the relation between cytokine release of monocytes due to S100A8 and neutrophil apoptosis. S100A8 enhanced the release of IL-6 and IL-8 in monocytes of normal and allergic subjects. Treatment of supernatants of normal and allergic monocytes with S100A8 blocked neutrophil apoptosis by inhibition of caspase 9 and caspase 3 activation. The secretion signal induced by S100A8 is involved in TLR4, Src family protein, PKCδ, ERK1/2, p38 MAPK, JNK, and NF-κB. These findings may contribute to understanding the complex pathogenesis of allergic diseases by determining inflammatory responses associated with S100A8, monocytes, and neutrophils.

Zinc finger and BTB domain-containing protein 3 is essential for the growth of cancer cells

  • Lim, Ji-Hong
    • BMB Reports
    • /
    • 제47권7호
    • /
    • pp.405-410
    • /
    • 2014
  • ZBTB3 belongs to the Zinc finger and BTB/POZ domain containing transcription factor family; however, its biological role has rarely been studied. We demonstrate for the first time, to our knowledge, that ZBTB3 is an essential factor for cancer cell growth via the regulation of the ROS detoxification pathway. Suppression of ZBTB3 using two different short hairpin RNAs in human melanoma, lung carcinoma, and breast carcinoma results in diminished cell growth. In addition, we found that suppression of ZBTB3 activates a caspase cascade, including caspase-9, -3, and PARP leading to cellular apoptosis, resulting from failed ROS detoxification. We identified that ZBTB3 plays an important role in the gene expression of ROS detoxification enzymes. Our results reveal that ZBTB3 may play a critical role in cancer cell growth via the ROS detoxification system. Therefore, therapeutic strategies that target ZBTB3 could be used in selective cancer treatments.

Involvement of Caspases and Bcl-2 Family in Nitric Oxide-Induced Apoptosis of Rat PC12 Cells

  • Jeong, Yeon-Jin;Jung, Ji-Yeon;Lee, Jin-Ha;Cho, Jin-Hyoung;Lee, Guem-Sug;Kim, Sun-Hun;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권6호
    • /
    • pp.329-335
    • /
    • 2006
  • This study was aimed to investigate the nitric oxide (NO)-induced cytotoxic mechanism in PC12 cells. Sodium nitroprusside (SNP), an NO donor, decreased the viability of PC12 cells in dose-and time-dependent manners. SNP enhanced the production of reactive oxygen species (ROS), and gave rise to apoptotic morphological changes including cell shrinkage, chromatin condensation, and DNA fragmentation. Expression of Bax was not affected, whereas Bcl-2 was downregulated in SNP-treated PC12 cells. SNP augmented the release of cytochrome c from mitochondria into cytosol and enhanced caspase -8, -9, and -3 activities. SNP upregulated both Fas and Fas-L, which are known to be components of death receptor assembly. These results suggest that NO induces apoptosis of PC12 cells through both mitochondria-and death receptor-mediated pathways mediated by ROS and Bcl-2 family.

T24 인체방광암 세포에서 pachymic acid에 의한 apoptosis 유발 (Induction of Apoptosis by Pachymic Acid in T24 Human Bladder Cancer Cells)

  • 정진우;백준영;김광동;최영현;이재동
    • 생명과학회지
    • /
    • 제25권1호
    • /
    • pp.93-100
    • /
    • 2015
  • Pachymic acid는 복령에서 분리된 lanostane-type인 triterpenoid의 일종이다. 최근 pachymic acid가 항암 및 항염증 효능과 산화적 스트레스에 대한 항산화 효능 등과 같은 약리적인 효능이 있는 것으로 밝혀지고 있으나, 그에 대한 구체적인 분자생물학적 기전 연구는 매우 미비한 실정이다. 본 연구에서는 pachymic acid의 항암활성 및 관련 기전 조사의 일환으로 T24 인체 방광암세포 모델을 이용하여 pachymic acid에 의한 apoptosis 유발 여부를 검증하였다. 본 연구의 결과에 의하면 pachymic acid는 T24 세포의 증식을 유의적으로 억제시켰으며, 이는 apoptosis 유발과 연관성이 있음을 다양한 방법으로 확인하였다. Pachymic acid에 의한 apoptosis 유도에는 pro-apoptotic 인자들의 발현 증가와 anti-apoptotic 유전자 산물들의 발현 감소가 동반되었으며, MMP의 소실과 tBid의 발현 증가가 관찰되었다. 아울러 pachymic acid는 extrinsic 및 intrinsic apoptosis 경로의 개시에 관여하는 caspase-8 및 -9의 활성뿐 만 아니라, caspase-3의 활성도 증가시킴으로서 PARP와 같은 기질 단백질의 단편화를 초래하였다. 따라서 pachymic acid는 항암활성을 지니는 천연생리활성 물질로서의 잠재력이 매우 높음을 알 수 있었다.

황금(黃芩) 에탄올 추출물에 의한 인체 신세포암 Caki-1 세포의 자가세포사멸 유도 (Induction of Apoptosis by Ethanol Extract of Scutellaria baicalensis in Renal ell Carcinoma Caki-1 Cells)

  • 황원덕;임용균;손병일;박철;박동일;최영현
    • 생명과학회지
    • /
    • 제23권4호
    • /
    • pp.518-528
    • /
    • 2013
  • 꿀풀과(Labiatae)에 속하는 황금(黃芩, S. baicalensis)은 한국, 중국, 몽골 및 시베리아 동부 등지에 분포하는 여러해살이 초본식물로서 예로부터 민간처방 약재로 사용되었으며, 한방에서는 뿌리 말린 것을 이질, 발열 및 황달의 치료제로 사용되고 있다. 또한 최근 연구에 따르면 황금 추출물은 항염증, 항당뇨, 항균, 항알레르기, 항바이러스, 항고혈압, 항산화 및 항암 효능을 가지는 것으로 알려져 있으나 신세포암에서의 항암효능 및 분자생물학적 기전에 대해서는 명확히 밝혀져 있지 않다. 본 연구에서는 인체 신세포암 Caki-1 세포에서 황금 에탄올 추출물(ethanol extract of S. baicalensis, EESB)이 유발하는 항암효과 및 항암기전을 조사하였다. 본 연구의 결과에 의하면 EESB 처리에 의한 Caki-1 세포의 증식억제는 apoptosis 유발과 밀접한 연관이 있었으며, 이는 DR4 Fas ligand 및 Bax 단백질의 발현 증가와 Bid, XIAP 및 cIAP-1의 발현 억제와 관련이 있었다. EESB는 또한 미토콘드리아의 기능 손상과 caspase-3의 기질단백질인 PARP, ${\beta}$-catenin 및 $PLC{\gamma}$-1 단백질의 단편화를 유발하였다. 그러나 EESB 처리에 의하여 유발되었던 apoptosis가 pan-caspases inhibitor인 z-VED-fmk를 이용하여 caspases의 활성을 억제하였을 경우 현저하게 감소되어, EESB에 의한 apoptosis 과정에 caspase의 활성 증대가 중요한 역할을 한다는 것을 알 수 있었다. 이러한 결과들은 황금의 항암작용을 이해하는데 중요한 자료가 될 것이고 나아가 향후 수행될 추가 실험을 위한 기초 자료로서 그 가치가 매우 높을 것으로 생각된다.

Calpains and Apoptosis

  • Tagliarino, Colleen;Pink, John J.;Boothman, David A.
    • Animal cells and systems
    • /
    • 제5권4호
    • /
    • pp.267-274
    • /
    • 2001
  • Calpains are a family of cysteine proteases existing primarily in two forms designated by the $Ca^{2+}$ concentration needed for activation in vitro, $\mu$-calpain (calpain-I) and m-calpain (calpain-II). The physiologica1 roles of calpains remain unclear. Many groups have proposed a role for calpains In apoptosis, but their patterns of activation are not well characterized. Calpains have been implicated in neutrophil apoptosis, glucocorticoid-induced thymocyte apoptosis, as well as many other apoptotic pathways. Calpain activation in apoptosis is usually linked upstream or downstream to caspase activation, or in a parallel pathway alongside caspase activation. Calpains have been suggested to be involved in DNA fragmentation (via endonuclease activation), but also as effector proteases that cleave cellular proteins involved in DNA repair, membrane associated proteins and other homeostatic regulatory proteins. Recently, our laboratory demonstrated $\mu$-calpain activation in NAD(P)H: quinone oxidoreducatse 1 (NQO1)-expressing cells after exposure to $\beta$-lapachone, a novel quinone and potential chemo- and radio-therapeutic agent. Increased cytosolic $Ca^{2+}$ in NQO1-expressing cells after $\beta$-lapachone exposures were shown to lead to $\mu$-calpain activation. In turn, $\mu$-calpain activation was important for substrate proteolysis and DNA fragmentation associated with apoptosis. Upon activation, $\mu$-calpain translocated to the nucleus where it could proteolytically cleave PARP and p53. We provided evidence that $\beta$-lapachone-induced, $\mu$-calpain stimulated, apoptosis did not involve any of the known caspases; known apoptotic caspases were not activated after $\beta$-lapachone treatment of NQO1-expressing cells, nor did caspase inhibitors have any effect on $\beta$-1apachone-induced cell death. Elucidation of processes by which $\beta$-1apachone-stimulated $\mu$-calpain activation and calpains ability to activate endonucleases and induce apoptosis independent of caspase activity will be needed to further develop/modulate $\beta$-lapachone for treatment of human cancers that over-express NQO1.

  • PDF

지모(知母)에탄올추출물의 HT-29대장암세포 Apoptosis 유도효과 (Effect of Anemarrhenae Rhizoma Ethanol Extract on Apoptosis Induction of HT-29 Human Colon Cancer Cells)

  • 김태현;김범호;전병국;윤정록;우원홍;문연자;이장천;이부균;박영규;임규상
    • 한방안이비인후피부과학회지
    • /
    • 제24권1호
    • /
    • pp.16-24
    • /
    • 2011
  • Objective : In this study, we investigated the effects of ethanol extract of Anemarrhenae Rhizoma (EAR) on the proliferation and apoptosis induction of HT-29 human colon cancer cells. Methods : Cell viability of HT-29 cells were measured by MTT assay and apoptisis-related proteins were assessed using western blotting. Chromatin condensation of HT-29 cells stained with Hoechst 33258. Results : In the present study, we demonstrated that EAR exhibited significant cytotoxicity in HT-29 cells. The induction of apoptosis in HT-29 cells by EAR treatment was characterized by chromatin condensation and the activation of caspase-3. EAR-induced apoptosis is accompanied by the release of cytochrome c and the specific proteolytic cleavage of PARP. EAR was appeared cytotoxic effect to HT-29 cells in a dose-dependent manner. Concomitantly, EAR treatment led to increase in the caspase-9. The reduction of Bcl-2 and truncation of Bid were induced by EAR. Conclusion : We studied that the EAR induced apoptosis in human colon adenocarcinoma HT-29 cells. These results indicated that EAR can cause apoptosis through mitochondria/caspase pathway in human HT-29 cells.

Interruption of Helicobacter pylori-Induced NLRP3 Inflammasome Activation by Chalcone Derivatives

  • Choi, Hye Ri;Lim, Hyun;Lee, Ju Hee;Park, Haeil;Kim, Hyun Pyo
    • Biomolecules & Therapeutics
    • /
    • 제29권4호
    • /
    • pp.410-418
    • /
    • 2021
  • Helicobacter pylori causes chronic gastritis through cag pathogenicity island (cagPAI), vacuolating cytotoxin A (VacA), lipopolysaccharides (LPS), and flagellin as pathogen-related molecular patterns (PAMPs), which, in combination with the pattern recognition receptors (PRRs) of host cells promotes the expression and secretion of inflammation-causing cytokines and activates innate immune responses such as inflammasomes. To identify useful compounds against H. pylori-associated gastric disorders, the effect of chalcone derivatives to activate the nucleotide-binding oligomerization domain (NOD)-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome was examined in an H. pylori-infected human monocytic THP-1 cell line in this study. Among the five synthetic structurally-related chalcone derivatives examined, 2'-hydroxy-4',6'-dimethoxychalcone (8) and 2'-hydroxy-3,4,5-trimethoxychalcone (12) strongly blocked the NLRP3 inflammasome in H. pylori-infected THP-1 cells. At 10 μM, these compounds inhibited the production of active IL-1β, IL-18, and caspase-1, and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) oligomerization, but did not affect the expression levels of NLRP3, ASC, and pro-caspase-1. The interruption of NLRP3 inflammasome activation by these compounds was found to be mediated via the inhibition of the interleukin-1 receptor-associated kinase 4 (IRAK4)/IκBα/NF-κB signaling pathway. These compounds also inhibited caspase-4 production associated with non-canonical NLRP3 inflammasome activation. These results show for the first time that certain chalcones could interrupt the activation of the NLRP3 inflammasome in H. pylori-infected THP-1 cells. Therefore, these chalcones may be helpful in alleviating H. pylori-related inflammatory disorders including chronic gastritis.