Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.7.075

Zinc finger and BTB domain-containing protein 3 is essential for the growth of cancer cells  

Lim, Ji-Hong (Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University)
Publication Information
BMB Reports / v.47, no.7, 2014 , pp. 405-410 More about this Journal
Abstract
ZBTB3 belongs to the Zinc finger and BTB/POZ domain containing transcription factor family; however, its biological role has rarely been studied. We demonstrate for the first time, to our knowledge, that ZBTB3 is an essential factor for cancer cell growth via the regulation of the ROS detoxification pathway. Suppression of ZBTB3 using two different short hairpin RNAs in human melanoma, lung carcinoma, and breast carcinoma results in diminished cell growth. In addition, we found that suppression of ZBTB3 activates a caspase cascade, including caspase-9, -3, and PARP leading to cellular apoptosis, resulting from failed ROS detoxification. We identified that ZBTB3 plays an important role in the gene expression of ROS detoxification enzymes. Our results reveal that ZBTB3 may play a critical role in cancer cell growth via the ROS detoxification system. Therefore, therapeutic strategies that target ZBTB3 could be used in selective cancer treatments.
Keywords
Apoptosis; Cancer; ROS; ZBTB3;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Perez-Torrado, R., Yamada, D. and Defossez, P. A. (2006) Born to bind: the BTB protein-protein interaction domain. Bioessays 28, 1194-1202.   DOI   ScienceOn
2 Lee, S. U. and Maeda, T. (2012) POK/ZBTB proteins: an emerging family of proteins that regulate lymphoid development and function. Immunol. Rev. 247, 107-119.   DOI   ScienceOn
3 Kelly, K. F and Daniel, J. M. (2006) POZ for effect--POZ-ZF transcription factors in cancer and development. Trends. Cell Biol. 16, 578-587.   DOI   ScienceOn
4 Costoya, J. A. (2007) Functional analysis of the role of POK transcriptional repressors. Brief. Funct. Genomic. Proteomic. 6, 8-18.   DOI   ScienceOn
5 Zheng, J., Xiong, D., Sun, X., Wang, J., Hao, M., Ding, T., Xiao, G., Wang, X., Mao, Y., Fu, Y., Shen, K. and Wang, J. (2012) Signification of hypermethylated in cancer 1 (HIC1) as tumor suppressor gene in tumor progression. Cancer Microenviron 5, 285-293.   DOI   ScienceOn
6 Albagli-Curiel, O. (2003) Ambivalent role of BCL6 in cell survival and transformation. Oncogene 22, 507-516.   DOI   ScienceOn
7 Wu, W. S. (2006) The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev. 25, 695-705.
8 Polo, J. M., Dell'Oso, T., Ranuncolo, S. M., Cerchietti, L., Beck, D., Da silva, G. F., Prive, G. G., Licht, J. D. and Melnick, A. (2004) Specific peptide interference reveals BCL6 transcriptional and oncogenic mechanisms in B-cell lymphoma cells. Nat. Med. 10, 1329-1335.   DOI   ScienceOn
9 Kim, K., Chadalapaka, G., Lee, S. O., Yamada, D., Sastre-Garau, X., Defossez, P. A., Park, Y. Y., Lee, J. S. and Safe, S. (2012) Identification of oncogenic microRNA-17-92/ZBTB4/specificity protein axis in breast cancer. Oncogene 31, 1034-1044.   DOI   ScienceOn
10 Finkel, T. (2011) Signal transduction by reactive oxygen species. J. Cell Biol. 194, 7-15.   DOI   ScienceOn
11 Sena, L. A. and Chandel, N. S. (2012) Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 48, 158-167.   DOI   ScienceOn
12 Dixon, S. J. and Stockwell, B. R. (2014) The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 10, 9-17.   DOI
13 Trachootham, D., Alexandre, J. and Huang, P. (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?. Nat. Rev. Drug. Discov. 8, 579-591.   DOI   ScienceOn
14 Vazquez, F., Lim, J. H., Chim, H., Bhalla, K., Girnun, G., Pierce, K., Clish, C. B., Granter, S. R., Widlund, H. R., Spiegelman, B. M. and Puigserver, P. (2013) PGC1alpha expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 23, 287-301.   DOI   ScienceOn
15 Trachootham, D., Zhou, Y., Zhang, H., Demizu, Y., Chen, Z., Pelicano, H., Chiao, P. J., Achanta, G., Arlinghaus, R. B., Liu, J. and Huang, P. (2006) Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10, 241-252.   DOI   ScienceOn
16 Cho, J. H., Kim, M. J., Kim, K. J. and Kim, J. R. (2012) POZ/BTB and AT-hook-containing zinc finger protein 1 (PATZ1) inhibits endothelial cell senescence through a p53 dependent pathway. Cell Death Differ. 19, 703-712.   DOI
17 Park, H. J., Carr, J. R., Wang, Z., Nogueira, V., Hay, N., Tyner, A. L., Lau, L. F., Costa, R. H. and Raychaudhuri, P. (2009) FoxM1, a critical regulator of oxidative stress during oncogenesis. EMBO J. 28, 2908-2918.   DOI   ScienceOn
18 Raj, L., Ide, T., Gurkar, A. U., Foley, M., Schenone, M., Li, X., Tolliday, N. J., Golub, T. R., Carr, S. A., Shamji, A. F., Stern, A. M., Mandinova, A., Schreiber, S. L. and Lee, S. W. (2011) Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 475, 231-234.   DOI   ScienceOn
19 Valentino, T., Palmieri, D., Vitiello, M., Pierantoni, G. M., Fusco, A. and Fedele, M. (2013) PATZ1 interacts with p53 and regulates expression of p53-target genes enhancing apoptosis or cell survival based on the cellular context. Cell Death Dis. 4, e963.   DOI
20 Singh, A., Misra, V., Thimmulappa, R. K., Lee, H., Ames, S., Hoque, M. O., Herman, J. G., Baylin, S. B., Sidransky, D., Gabrielson, E., Brock, M. V. and Biswal, S. (2006) Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med. 3, e420.   DOI
21 Barrett, C. W., Smith, J. J., Lu, L. C., Markham, N., Stengel, K. R., Short, S. P., Zhang, B., Hunt, A. A., Fingleton, B. M., Carnahan, R. H., Engel, M. E., Chen, X., Beauchamp, R. D., Wilson, K. T., Hiebert, S. W., Reynolds, A. B. and Williams, C. S. (2012) Kaiso directs the transcriptional corepressor MTG16 to the Kaiso binding site in target promoters. PLoS One 7, e51205.   DOI
22 Boulay, G., Dubuissez, M., Van Rechem, C., Forget, A., Helin, K., Ayrault, O. and Leprince, D. (2012) Hypermethylated in cancer 1 (HIC1) recruits polycomb repressive complex 2 (PRC2) to a subset of its target genes through interaction with human polycomb-like (hPCL) proteins. J. Biol. Chem. 287, 10509-10524.   DOI
23 Irani, K., Xia, Y., Zweier, J. L., Sollott, S. J., Der, C. J., Fearon, E. R., Sundaresan, M., Finkel, T. and Goldschmidt-Clermont, P. J. (1997) Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275, 1649-1652.   DOI   ScienceOn