• Title/Summary/Keyword: caspase activity

Search Result 826, Processing Time 0.033 seconds

Improvement Effect of Sprout of Coix lacryma-jobi var. mayuen Stapf Water Extract on DSS-Induced Ulcerative Colitis in Mice. (DSS로 궤양성 대장염 유발된 동물모델에서 의이아(薏苡芽) 열수 추출물의 개선 효과)

  • Kim, Min Ju;Shin, Mi-Rae;Lee, Jin A;Park, Soon-Ae;Park, Hae-Jin;Lee, Jeong Hoon;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.35 no.6
    • /
    • pp.21-28
    • /
    • 2020
  • Objectives : The objective of this study was to investigate the improvement effect of Sprout of Coix lacryma-jobi var. mayuen Stapf water extract (SC) on the dextran sulfate sodium (DSS)-induced ulcerative colitis mice. Methods : The antioxidant activity of SC was measured through total polyphenol and total flavonoid content in vitro. The experiment was conducted with seven-week-old male Balb/c mice. After 1 week adaptation, acute colitis was induced by oral administration of 5% DSS dissolved in drinking water, for 7 days. And normal mice received drinking water without DSS throughout the entire experimental period. For each experiment, the mice were divided into 4 groups and 24 colitis mice were arbitrarily allocated into 3 groups (n = 8/group); Normal group, Control group, SC 100 mg/kg treated group (SCL), SC 200 mg/kg treated group (SCH). Serum and colon tissues were collected after one weeks of drug administration. Results : ROS levels, ONOO- levels, AST, and ALT in serum were decreased in SC treated groups compared to the control group. Western blotting measurements of Nrf2, HO-1, SOD, catalase, GPx-1/2, IL-4, IL-10, and Bcl2 showed that the SC treated groups was increased compared to the Control group. Also, western blot measurements of NF-κBp65, p-IκBα, COX-2, iNOS, TNF-α, IL-1β, Bax, and Caspase-3 showed that the SC treated groups was reduced compared to the Control group. Conclusion : Taken together, these results suggest that SC treatment can attenuate the DSS-induced colitis though inhibiting NF-κB pathway and enhancing Nrf2 pathway. Therefore, SC was the potential to be used as a natural therapeutic drug.

The Anticancer Effects and Drug Metabolic Enzyme Change by Intraperitoneal Injection of Agrimonia Pilosa Ledeb (선학초 (짚신나물) 복강주사의 항암효과 탐색 및 약물 대사효소의 변화)

  • Choi, Jung-Won;Jang, Bo-Hyung;Lee, Ju-Ah;Ko, Ho-Yeon;Jung, Hee;Jun, Chan-Yong;Park, Jong-Hyung;Kim, Ji-Hye;Ko, Seong-Gyu;Choi, You-Kyung
    • The Journal of Korean Medicine
    • /
    • v.30 no.4
    • /
    • pp.129-141
    • /
    • 2009
  • Objective: This study was to investigate the anti-tumor effect, safety, safety, mechanism and metabolizing enzyme of Agrimonia pilosa LEDEB (APL) in female C57B/L mouse tumor (in vivo). Method: First, to evaluate the antitumor activity of APL, we divided the mice into four groups: normal, control, APL50 (50mg/kg), and APL100 (100mg/kg). LLC-obtained American Type Culture Collection was used. LLC had been inoculated to induce tumors. To measure the anti-tumor effect of APL, we calibrated tumor size and weight. To analyze the mechanism of anti-tumor in APL, we used western blotting and to observe metabolizing enzyme in APL we used to real-time PCR. Result: APL50 and APL100 significantly inhibited tumor growth from 12 days after medicine injected. APL did not induce caspase-dependent apoptosis in LLC-bearing mouse tumor. In APL100, it decreased 41% and 71% in CYP2D22 and CYP3A11, respectively. Conclusion: These results suggest that APL has some anti-tumor effects in female C57B/L mouse tumor. APL should be used carefully with other drugs related with CYP2D22 and CYP3A11.

  • PDF

The Neuroprotective Effects of InSamYangYoung-tang(Renshenyangrongtang) on Aβ-induced Damages in Mice (인삼양영탕(人蔘養榮湯)이 Aβ를 처리한 PC12 세포와 생쥐의 손상 뇌신경조직에 미치는 영향)

  • Jang, Young-Joo;Jung, In-Chul;Lee, Sang-Ryong
    • Journal of Oriental Neuropsychiatry
    • /
    • v.21 no.1
    • /
    • pp.109-124
    • /
    • 2010
  • Objectives: This experiment was designed to investigate the effect of the InSamYangYoung-tang(Renshenyangrongtang) extract on $A{\beta}$-induced AD model. Methods: The effects of the InSamYangYoung-tang(Renshenyangrongtang) extract on neural damages of cultured PC12 cells induced by $A{\beta}$ were investigated. The effects of the InSamYangYoung-tang(Renshenyangrongtang) extract on neural damages of hippocampal and cortical neurons in the mouse induced by $\beta$-amyloid were investigated. Results: 1. $A{\beta}$ treatment into neuronal cells activated cell death pathway when analyzed by MTT assay and by histological analysis. Then InSamYangYoung-tang(Renshenyangrongtang) treatment improved cell survival to a similar level as in normal group. 2. $A{\beta}$ treatment increased caspase 3 protein levels but decreased phospho-Erk1/2 in neuronal cells. InSamYangYoung-tang(Renshenyangrongtang) treatment reversed the production levels of two proteins close to those in normal group. 3. $A{\beta}$ treatment induced the atrophy of neuronal cells in terms of neuronal processes and cell body shrinkage, but InSamYangYoung-tang(Renshenyangrongtang) greatly improved their morphology. 4. Neuroprotective activity, as observed in InSamYangYoung-tang(Renshenyangrongtang)-treated groups, was similarly observed in cells treated with galantamine which was used as a positive control. Moreover, overall recovery pattern by InSamYangYoung-tang(Renshenyangrongtang) was similar between cultured PC12 cells and in vivo hippocampal and cerebral cortical neurons in the mouse brain. Conclusions: This experiment shows that the InSamYangYoung-tang(Renshenyangrongtang) may play a protective role in neural tissues damaged by cytotoxic substances. Since neuronal damage seen in degenerative brains such as AD are largely unknown, the current data may provide possible insight into therapeutic strategies for AD treatments. InSamYangYoung-tang(Renshenyangrongtang) might be effective for the treatment of AD. Investigation into the clinical use of the InSamYangYoung-tang(Renshenyangrongtang) for AD is suggested for future research.

Anticancer and Immune Effects of Chungpae-tang on the Metastasis of Lung Cancer Cell (청폐탕(淸肺湯)의 실험적 폐전이암에 대한 항암 및 면역효과에 관한 연구)

  • Lee Dong-Ju;Kim Myung-Dong;Kim Young-Sam;Yoo Yeong-Min;Lee Seon-Goo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.5
    • /
    • pp.1281-1291
    • /
    • 2005
  • Chungpae-tang is suggested to have the antitumor activity on lung cancer. This study was peformed to investigate apoptotic effect in vitro and antitumor effect and immune response after injection of B16-F10 melanoma cells and Chungpae-tang into a tail vein of C57BL/6 mice and administratition of Chungpae-tang in A549 human lung cancer cell line in vivo, respectively. Experimental studies were obtained by measuring the median survival time and cytokine expression through RT-PCR, and ELISA assay. The results were summarized as follows: 5 mg/ml of Chungpae-tang causing DNA fragmentation, caspase-3 enzyme activation, PARP fragmentation, and cytochrome c release, suggested that Chungpae-tang has in vitro apoptotic effect in A549 human lung cancer cell line in the apoptosis-induced experiment. The median survival time of the Chungpae-tang treated group was 21 days and that of control group was 22 days, suggesting that the median survival time between the Chungpae-tang treated group and the control group was not significant. Cytokine expression between the Chungpae-fang treated group and the control group was noticeable, but was not significant in the RT-PCR. In the ELISA assay, IL-2 productivity in the Chungpae-tang treated group was to increase more than that in the normal group (p<0.05) and was no significant between the Chungpae-tang treated group and the control group. $INF-\gamma$ productivity of the control group decreased more than that of the normal group (p<0.05) and that of the Chungpae-tang-treated group increased more than that of the control group (p<0.05). IL-12 productivity of the control group increased more than that of the normal group (p<0.05) and that of the Chungpae-tang-treated group decreased more than that of the control group (p<0.05) and the normal group. IL-4 productivity of the Chungpae-tang-treated group increased more than that of the normal group and the control group (p<0.05). IL-10 productivity of the Chungpae-tang-treated group increased more than that of the normal group and the control group (p<0.05). Accordingly the results show Chungpae-tang could induce apoptosis in A549 human lung cancer cell line and bring to antitumor effect and immune response against injection of B16-F10 melanoma cells into a tail vein of C57BL/6 mice but it needs more research on the precise mechanism of such effects.

An Experimental Study of Effect on ECV 304 Cells, Platelet Rich Plasma and Rats treated with L-NAME by Boonsimgieum extract (분심기음(分心氣飮)이 고혈압 백서와 인간유래 혈관내피세포주(ECV 304)에 미치는 영향에 대한 연구)

  • Jeon, Yeon-Yi;Park, Chang-Gook;Lee, So-Yeon;Yoon, Hyeon-Deok;Shin, Wo-Cheol;Park, Chi-Sang
    • The Journal of Internal Korean Medicine
    • /
    • v.26 no.1
    • /
    • pp.182-198
    • /
    • 2005
  • Object : This study was designed to research whether the protection and inhibitory effects of cardiovascular diseases in L-NAME induced rat or ECV 304 cell lines through the Cell morphological pattern, Tunel assay, LDH activity, heart rate, blood pressure and immunohistochemistric analysis by Boonsimgieum water extract Methods : Nitric oxide(NO) play an important role in normal and pathophysiological cells including as a messenger molecule, neurotransmitter, microbiocidal agent, or dilator of blood vessels and artheriosclerosis, hypertension, myocardial infarction, respectively. Endothelial cell products can modulate the magnitude of a response to a vasoconstrictor, as evinced by the greater constriction after endothelium removal or NO synthesis blockade. To investigate that Boonsimgieum in the potential contribution of the levels of nitric oxide generated by endothelial nitric oxide synthase (eNOS) and the mechanisms of protection against NG-nitro-L-arginine methyl ester (L-NAME), human ECV 304 cells, which normally do not express eNOS, were expressed by L-NAME. L-NAME stimulated rat or cells were found to be resistant to injury and delayed death following the Boonsimgieum. Inhibition of nitric oxide synthesis abolished the protective effect against L-NAME, thrombin and collagen exposure. Interestingly, such effects have been observed during stimulation with agents such as phenylephrine and KCl on L-NAME mediate rats, were damaged by the NOS inhibitor L-NAME. Result : As the result of this study, In group, the anti-apoptosis and necrosis in the cardiovascular system have a potential capacity for prevented, protected and treating the diseases of cardiovascular system, against the necrosis of rat and ECV 304 cells with Caspase 3 and calpain expression by L-NAME is promoted. Conclusion : these results demonstrate neuroprotective and memory enhancing effects of ZIBU, suggesting its beneficial actions for the treatment of AD.

  • PDF

Anti-proliferation Effect of Coscinoderma sp. Extract on Human Colon Cancer Cells (Coscinoderma sp.의 대장암세포 증식 억제 효과)

  • Choi, Ki Heon;Jung, Joohee
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.4
    • /
    • pp.294-298
    • /
    • 2016
  • Natural products are attractive as the source of new drug development. Especially, numerous unknown marine bioresources are an object of attention because the ocean occupies three fourth of the earth. Survival of marine bioresources in extreme environment may induce the production of biological active compounds. As previous study, we examined over 40 specimens of marine sponges collected from Micronesia and screened their anti-proliferative activities in various cancer cell lines. Among them, we investigated Coscinoderma sp.'s activity and mechanism in human colon carcinoma HCT116 and RKO cells. Furthermore, we also used the p53-knockout of HCT116 cells and the p53 loss of RKO cells for elucidating the role of p53. Coscinoderma sp. inhibited cellular viability independently of the p53 status. Therefore, we compared the expression level of cell death-related proteins by Coscinoderma sp. in HCT16 and in HCT116 p53KO cells. Coscinoderma sp. increased p53 level and NOXA levels and induced apoptosis under the condition of p53 existence. On the other hand, Coscinoderma sp. increased p21 and mTOR levels in HCT116 p53KO cells. These results suggest that Coscinoderma sp. induced anti-proliferation effect through different pathway depending on p53 status.

Enhancement of TRAIL-Mediated Apoptosis by Genistein in Human Hepatocellular Carcinoma Hep3B Cells: Roles of p38 MAPK Signaling Pathway (인체간암세포에서 genistein의 TRAIL에 의한 apoptosis 유도 상승효과에서 미치는 p38 MAPK signaling pathway의 영향)

  • Jin, Cheng-Yun;Park, Cheol;Park, Sang-Eun;Hong, Sang-Hoon;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1549-1557
    • /
    • 2011
  • Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis in many types of transformed cells; however, some human hepatocellular carcinoma cells are particularly resistant to the effects of TRAIL. Although genistein, a natural isoflavonoid phytoestrogen, has been shown to have pro-apoptotic activity against human cancer cell lines, little is known about the mechanism of genistein in terms of TRAIL-induced apoptosis. In the present study, it was investigated whether or not combined treatment with genistein and TRAIL synergistically induced apoptosis in Hep3B hepatocarcinoma cells. Results indicate that treatment with TRAIL in combination with nontoxic concentrations of genistein sensitized TRAIL-resistant Hep3B cells to TRAIL-induced apoptosis, which was associated with mitochondrial dysfunction. Further, the inhibition of p38 mitogen-activated protein kinase (MAPK) activation markedly decreased genistein and TRAIL-induced cell viability and apoptosis by enhanced truncation of Bid, increase of pro-apoptotic Bax, decrease of anti-apoptotic Bcl-2, and release of cytochrome c from mitochondria to cytoplasm. Activation of caspases and degradation of poly (ADP-ribose) polymerase induced by the combined treatment was also markedly increased by the inhibition of p38 MAPK, through the mitochondrial amplification step. In conclusion, our data suggest that genistein sensitizes TRAIL-induced-apoptosis via p38 MAPK-dependent pathway.

Ginsenoside compound-Mc1 attenuates oxidative stress and apoptosis in cardiomyocytes through an AMP-activated protein kinase-dependent mechanism

  • Hong, So-hyeon;Hwang, Hwan-Jin;Kim, Joo Won;Kim, Jung A.;Lee, You Bin;Roh, Eun;Choi, Kyung Mook;Baik, Sei Hyun;Yoo, Hye Jin
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.664-671
    • /
    • 2020
  • Background: Ginsenoside compound-Mc1 (Mc1) is a member of the deglycosylated ginsenosides obtained from ginseng extract. Although several ginsenosides have a cardioprotective effect, this has not been demonstrated in ginsenoside Mc1. Methods: We treated H9c2 cells with hydrogen peroxide (H2O2) and ginsenoside Mc1 to evaluate the antioxidant effects of Mc1. The levels of antioxidant molecules, catalase, and superoxide dismutase 2 (SOD2) were measured, and cell viability was determined using the Bcl2-associated X protein (Bax):B-cell lymphoma-extra large ratio, a cytotoxicity assay, and flow cytometry. We generated mice with high-fat diet (HFD)-induced obesity using ginsenoside Mc1 and assessed their heart tissues to evaluate the antioxidant effect and the fibrosis-reducing capability of ginsenoside Mc1. Results: Ginsenoside Mc1 significantly increased the level of phosphorylated AMP-activated protein kinase (AMPK) in the H9c2 cells. The expression levels of catalase and SOD2 increased significantly after treatment with ginsenoside Mc1, resulting in a decrease in the production of H2O2-mediated reactive oxygen species. Treatment with ginsenoside Mc1 also significantly reduced the H2O2-mediated elevation of the Bax:Bcl2 ratio and the number of DNA-damaged cells, which was significantly attenuated by treatment with an AMPK inhibitor. Consistent with the in vitro data, ginsenoside Mc1 upregulated the levels of catalase and SOD2 and decreased the Bax:B-cell lymphoma-extra large ratio and caspase-3 activity in the heart tissues of HFD-induced obese mice, resulting in reduced collagen deposition. Conclusion: Ginsenoside Mc1 decreases oxidative stress and increases cell viability in H9c2 cells and the heart tissue isolated from HFD-fed mice via an AMPK-dependent mechanism, suggesting its potential as a novel therapeutic agent for oxidative stress-related cardiac diseases.

Neuroprotective Effects of Ginsenoside Rg3 against 24-OH-cholesterol-induced Cytotoxicity in Cortical Neurons

  • Roh, Yoon-Seok;Kim, Hyoung-Bae;Kang, Chang-Won;Kim, Bum-Seok;Nah, Seung-Yeol;Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • v.34 no.3
    • /
    • pp.246-253
    • /
    • 2010
  • Ginsenoside $Rg_3$ ($Rg_3$), one of the active ingredients in Panax ginseng, attenuates NMDA receptor-mediated currents in vitro and antagonizes NMDA receptors through a glycine modulatory site in rat cultured hippocampal neurons. In the present study, we examined the neuroprotective effects of $Rg_3$ on 24-hydroxycholesterol (24-OH-chol)-induced cytotoxicity in vitro. The results showed that $Rg_3$ treatment significantly and dose-dependently inhibited 24-OH-chol-induced cell death in rat cultured cortical neurons, with an $IC_{50}$ value of $28.7{\pm}7.5\;{\mu}m$. Furthermore, the $Rg_3$ treatment not only significantly reduced DNA damage, but also dose-dependently attenuated 24-OH-chol-induced caspase-3 activity. To study the mechanisms underlying the in vitro neuroprotective effects of $Rg_3$ against 25-OH-chol-induced cytotoxicity, we also examined the effect of $Rg_3$ on intracellular $Ca^{2+}$ elevations in cultured neurons and found that $Rg_3$ treatment dose-dependently inhibited increases in intracellular $Ca^{2+}$, with an $IC_{50}$ value of $40.37{\pm}12.88\;{\mu}m$. Additionally, $Rg_3$ treatment dose-dependently inhibited apoptosis with an $IC_{50}$ of $47.3{\pm}14.2\;{\mu}m$. Finally, after confirming the protective effect of $Rg_3$ using a terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay, we found that $Rg_3$ is an active component in ginseng-mediated neuroprotection. These results collectively indicate that $Rg_3$-induced neuroprotection against 24-OH-chol in rat cortical neurons might be achieved via inhibition of a 24-OH-chol-mediated $Ca^{2+}$ channel. This is the first report to employ cortical neurons to study the neuroprotective effects of $Rg_3$ against 24-OH-chol. In conclusion, $Rg_3$ was effective for protecting cells against 24-OH-chol-induced cytotoxicity in rat cortical neurons. This protective ability makes $Rg_3$ a promising agent in pathologies implicating neurodegeneration such as apoptosis or neuronal cell death.

CM1 Ligation Induces Apoptosis via Fas-FasL Interaction in Ramos Cells, but via Down-regulation of Bcl-2 and Subsequent Decrease of Mitochondrial Membrane Potential in Raji Cells

  • Lee, Young-Sun;Kim, Yeong-Seok;Kim, Dae-Jin;Hur, Dae-Young;Kang, Jae-Seung;Kim, Young-In;Hahm, Eun-Sil;Cho, Dae-Ho;Hwang, Young-Il;Lee, Wang-Jae
    • IMMUNE NETWORK
    • /
    • v.6 no.2
    • /
    • pp.59-66
    • /
    • 2006
  • Background: CM1 (Centrocyte/-blast Marker I) defined by a mAb developed against concanavalin-A activated PBMC, is expressed specifically on a subpopulation of centroblasts and centrocytes of human germinal center (GC) B cells. Burkitt lymphoma (BL) is a tumor consisting of tumor cells with the characteristics of GC B cell. Previously we reported that CM1 ligation with anti-CM1 mAb induced apoptosis in Ramos $(IgM^{high})$ and Raji $(IgM^{low})$ cells. Methods & Results: In the present study, we observed that CM1 ligation with anti-CM1 mAb induced Fas ligand and Fas expression in Ramos cells, but not in Raji cells. Furthermore, anti-Fas blocking antibody, ZB4, blocked CM1-mediated apoptosis effectively in Ramos cells, but not in Raji cells. Increased mitochondrial membrane permeabilization, which was measured by $DiOC_6$, was observed only in Raji cells. In contrast to no significant change of Bax known as pro-apoptotic protein, anti-apoptotic protein Bcl-2 was significantly decreased in Raji cells. In addition, we observed that CM1 ligation increased release of mitochondrial cytochrome c and upregulated caspase-9 activity in Raji cells. Conclusion: These results suggest that apoptosis induced by CM1-ligation is mediated by Fas-Fas ligand interaction in Ramos cells, whereas apoptosis is mediated by down-regulation of Bcl-2 and subsequent decrease of mitochondrial membrane potential in Raji cells.