• Title/Summary/Keyword: caspase activity

Search Result 826, Processing Time 0.034 seconds

Study on the Antileukemic Effect of Galla Rhois

  • Kim, Myung-Wan;Ju, Sung-Min;Kim, Kun-Jung;Yun, Yong-Gab;Han, Dong-Min;Kim, Won-Sin;Jeon, Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.234-241
    • /
    • 2005
  • Galla Rhois is a nest of parasitic bug, Mellaphis chinensis Bell, in Rhus chinensis Mill. Galla Rhois has been used for the therapy of diarrhea, peptic ulcer, hemauria, etc., that showed various antiinflammatory activity, and other biological properties. We studied the effect of Galla Rhois water extract(GRWE). The cytotoxic activity of GRWE in HL-60 cells was increased in a concentration-dependent manner. GRWE was cytotoxic to HL-60 cells, with $IC_50$ of $100{\mu}g/m{\ell}$. Treatment of GRWE to HL-60 cells showed the fragmentation of DNA in a concentration manner, suggesting that these cells underwent apoptosis. In addition, the flow cytometric analysis revealed GRWE concentration-dependently increased apoptotic cells with hypodiploid DNA content and arrested G1 phase of cell cycle. These results indicate that GRWE may have a possibility of potential anticancer activities. Treatment of HL-60 cells with GRWE was induced activation of caspase-3, caspase-8 and proteolytic cleavage of poly(ADP-ribose) polymerase. Also, caspase-3 was directly activated via caspase-8 activation. GRWE also caused the release of cytochrome c from mitochondria into the cytosol. GRWE-induced cytochrome c release was mediated by caspase-8-dependent cleavage of Bid and Bax translocation. These results suggest that caspase-8 mediates caspase-3 activation and cytochrome c release during GRWE-induced apoptosis in HL-60 cells.

Effect of Epigallocatechin Gallate on Apoptosis in MDA-MB-231 Human Breast Cancer Cells (Epigallocatechin Gallate가 인체 유방암 세포인 MDA-MB-231의 세포사멸에 미치는 영향)

  • Hong, Eun-Jung;Kim, Woo-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.9
    • /
    • pp.1114-1119
    • /
    • 2008
  • Among the numerous polyphenols isolated from green tea, epigallocatechin gallate (EGCG) is a predominate and is considered to be a major therapeutic agent. To elucidate the mechanical insights of anti-tumor effect, EGCG was applied to human breast cancer MDA-MB-231 cells. We investigated the effect of EGCG on protein and mRNA expression of proteins related to cell apoptosis in MDA-MB-231 human breast cancer cell lines. We also identified caspase-3 activity. We cultured MDA-MB-231 cells in the presence of 0, 5, 10, and $20\;{\mu}M$ of EGCG. Protein and mRNA expression of bcl-2 were decreased dose-dependently in cells treated with EGCG. However, protein and mRNA expression of bax were increased (p<0.05). Caspase-3 activities were increased dose-dependently in cells treated with EGCG. These results suggest that EGCG induces cell apoptosis by increase of caspase activity through decreasing of protein and mRNA expression of bcl-2 and increasing of protein and mRNA expression of bax.

20(S)-Protopanaxadiol Induces Human Breast Cancer MCF-7 Apoptosis through a Caspase-Mediated Pathway

  • Zhang, Hong;Xu, Hua-Li;Fu, Wen-Wen;Xin, Ying;Li, Mao-Wei;Wang, Shuai-Jun;Yu, Xiao-Feng;Sui, Da-Yun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7919-7923
    • /
    • 2014
  • 20(S)-Protopanaxadiol (PPD), a ginsenoside isolated from Pananx quinquefolium L., has been shown to inhibit growth and proliferation in several cancer cell lines. The aim of this study was to evaluate its anticancer activity in human breast cancer cells. MCF-7 cells were incubated with different concentrations of 20(S)-PPD and cytotoxicity was evaluated by MTT assay. Occurrence of apoptosis was detected by DAPI and Annexin V-FITC/PI double staining. Mitochondrial membrane potential was measured with Rhodamine 123. The Bcl-2 and Bax expression were determined by Western blot analysis. Caspase activity was measured by colorimetric assay. 20(S)-PPD dose-dependently inhibited cell proliferation in MCF-7 cells, with an $IC_{50}$ value of $33.3{\mu}M$ at 24h. MCF-7 cells treated with 20(S)-PPD presented typical apoptosis, as observed by morphological analysis in cell stained with DAPI. The percentages of annexin V-FITC positive cells were 8.92%, 17.8%, 24.5% and 30.5% in MCF-7 cells treated with 0, 15, 30 and $60{\mu}M$ of 20(S)-PPD, respectively. Moreover, 20(S)-PPD could induce mitochondrial membrane potential loss, up-regulate Bax expression and down-regulate Bcl-2 expression. These events paralleled activation of caspase-9, -3 and PARP cleavage. Apoptosis induced by 20(S)-PPD was blocked by z-VAD-fmk, a pan-caspase inhibitor, suggesting induction of caspase-mediated apoptotic cell death. In conclusion, the 20(S)-PPD investigated is able to inhibit cell proliferation and to induce cancer cell death by a caspase-mediated apoptosis pathway.

Induction of Human Hepatocellular Carcinoma HepG2 Cell Apoptosis by Naringin

  • Banjerdpongchai, Ratana;Wudtiwai, Benjawan;Khaw-on, Patompong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3289-3294
    • /
    • 2016
  • Naringin, a bioflavonoid found in Citrus seeds, inhibits proliferation of cancer cells. The objectives of this study were to investigate the mode and mechanism(s) of hepatocellular carcinoma HepG2 cell death induced by naringin. The cytotoxicity of naringin towards HepG2 cells proved dose-dependent, measured by MTT assay. Naringin-treated HepG2 cells underwent apoptosis also in a concentration related manner, determined by annexin V-fluorescein isothiocyanate (FITC) and propidium iodide (PI) employing flow cytometry. Mitochondrial transmembrane potential (MTP) measured using 3,3'-dihexyloxacarbocyanine iodide ($DiOC_6$) and flow cytometer was reduced concentration-dependently, which indicated influence on the mitochondrial signaling pathway. Caspase-3, -8 and -9 activities were enhanced as evidenced by colorimetric detection of para-nitroaniline tagged with a substrate for each caspase. Thus, the extrinsic and intrinsic pathways were linked in human naringin-treated HepG2 cell apoptosis. The expression levels of pro-apoptotic Bax and Bak proteins were increased whereas that of the anti-apoptotic Bcl-xL protein was decreased, confirming the involvement of the mitochondrial pathway by immunoblotting. There was an increased expression of truncated Bid (tBid), which indicated caspase-8 proteolysis activity in Bid cleavage as its substrate in the extrinsic pathway. In conclusion, naringin induces human hepatocellular carcinoma HepG2 cell apoptosis via mitochondria-mediated activation of caspase-9 and caspase-8-mediated proteolysis of Bid. Naringin anticancer activity warrants further investigation for application in medical treatment.

Angelica polymorpha Maxim Induces Apoptosis of Human SH-SY5Y Neuroblastoma Cells by Regulating an Intrinsic Caspase Pathway

  • Rahman, Md. Ataur;Bishayee, Kausik;Huh, Sung-Oh
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.119-128
    • /
    • 2016
  • Angelica polymorpha Maxim root extract (APRE) is a popular herbal medicine used for treating stomachache, abdominal pain, stomach ulcers, and rheumatism; however the effect of APRE on cancer cells has not yet been explored. Here, we examined APRE cytotoxicity seen on target neuroblastoma cells (NB) using cell viability assays, DAPI visualization of fragmented DNA, and Western blotting analysis of candidate signaling pathways involved in proliferation and apoptosis. We demonstrated that APRE reduced cell viability in NB to a greater extent than in fibroblast cells. In addition, we found that APRE could inhibit the three classes of MAPK proteins and could also down-regulate the PI3K/AKT/GSK-$3{\beta}$ activity all being relevant for proliferation and survival. APRE could also up-regulate Bax expression and down-regulate Bcl-2 and Mcl-1. With APRE treatment, depolarization of mitochondria membrane potential and activation of caspase-3 was demonstrated in the SH-SY5Y cells. We could not found increased activity of death receptor and caspase-8 as markers of the extrinsic apoptosis pathway for the APRE treated cells. In presence of a caspase-3 siRNA and a pan-caspase inhibitor, APRE could not reduce the viability of NB cells to a significant degree. So we predicted that with APRE, the intrinsic pathway was solely responsible for inducing apoptosis as we also showed that the non-caspase autophagy pathway or ER stress-ROS mediated pathways were not involved. These findings demonstrate that an intrinsic mitochondria-mediated apoptosis pathway mediates the apoptotic effects of APRE on SH-SY5Y cells, and that APRE shows promise as a novel agent for neuroblastoma therapy.

$p19^{ras}$ Accelerates $p73{\beta}$-mediated Apoptosis through a Caspase-3 Dependent Pathway

  • Jang, Sang-Min;Kim, Jung-Woong;Choi, Kyung-Hee
    • Animal cells and systems
    • /
    • v.13 no.4
    • /
    • pp.399-403
    • /
    • 2009
  • $p19^{ras}$ is an alternative splicing variant of the proto-oncogene c-H-ras pre-mRNA of $p21^{ras}$. In contrast to $p21^{ras}$, $p19^{ras}$ does not have a C-terminal CAAX motif that targets the plasma membrane and is localized to both the cytoplasm and nucleus. We found that $p19^{ras}$ activated the transcriptional activity of $p73{\beta}$ through protein-protein interactions in the nucleus. p73 is known to play an important role in cellular damage responses such as apoptosis. Although p73 is a structural and functional homologue of p53, p73-mediated apoptosis has not yet been clearly elucidated. In this study, we demonstrate that the interaction between $p19^{ras}$ and $p73{\beta}$ accelerated $p73{\beta}$-induced apoptosis through a caspase-3 dependent pathway. Treatment with DEVD-CHO, a caspase inhibitor, also strengthened $p73{\beta}$-mediated apoptosis through a caspase-3 dependent pathway. Furthermore, the enhanced transcriptional activity of endogenous $p73{\beta}$ by treatment with Taxol was amplified by $p19^{ras}$ overexpression, which markedly increased caspase-3 dependent apoptosis in the p53-null SAOS2 cancer cell line. Our findings indicate a functional linkage between $p19^{ras}$ and p73 in caspase-3 mediated apoptosis of cancer cells.

Inhibitory Effects of Scutellaria barbata D. Don on the Cell Proliferation of HeLa cells (반지연(半枝蓮)이 HeLa Cell의 증식억제(增殖抑制)와 사멸(死滅)에 미치는 영향(影響))

  • Cho, Jung-Hoon;Jang, Jun-Bock;Lee, Kyung-Sub;Ha, Jee-Yeun
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.19 no.4
    • /
    • pp.47-60
    • /
    • 2006
  • Purpose : This study was conducted to investigate the inhibitory effects of Scutellaria barbata D. D on on the cell proliferation of HeLa Cells. Methods : Human uterine cervical carcinoma HeLa cells were cultured in the 1%, 5% and 10% concentration of Scutellaria barbata D. D on solution for 24, 48 and 72 hours for the direct inhibitory effects of Scutellaria barbata D. D on. Then we examined the effect of Scutellaria barbata D. D on solution on the cell proliferation inhibition by XTT assay. DNA fragmentation, MAP kinase activity and caspase activity by FACS analysis in HeLa cells. Results : We found that the proliferation of HeLa cells was significantly decreased in Scutellaria barbata D. D on solution containing groups comparing with a control group in a concentration-dependant manner. When HeLa cells were cultivated for 24 hours with 5% Scutellaria barbata D. D on solution containing group, the percentage of HeLa cells with activated caspase was the highest. Scutellaria barbata D. D on solution reduced the MAP kinase activity of HeLa cells comparing with the control group. By the XTT assay, the cell's activity was decreased in 5% and 10% Scutellaria barbata D. D on solution containing groups in 24 and 72 hours cultivation and 10% group in 48 hours. DNA fragmentation and caspase-3 activity of HeLa cells, however, were changed insignificantly. Conclusion : From this study we could suggest that Scutellaria barbata D. D on is available to the inhibition and apoptosis of human cervical carcinoma cell line, HeLa cells in vitro.

  • PDF

Allicin-induced apoptosis of gastric epithelial cells is associated with changes of caspase-independent effector and involvement of PKA

  • Baeg, Hye-Kyoung;Rhee, Dong-Kwon;Pho, Suhk-Neung
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.166.2-166.2
    • /
    • 2003
  • Garlic (Allium sativum) has been used as a general food and a remedy in Oriental for a long time. Since garlic compounds have been also shown to inhibit growth of tumors and to modulate the activity of carcinogenesis, the effects of allicin on growth and survival in human gastric epithelial cells were evaluated by cell viability, cell cycle analysis and DNA fragmentation. Protein levels of cytochrome C, Bcl-xL, Bax and AIF were detected by Western blotting. Effects of recombinant VacA on caspase proteases activity were also determined. (omitted)

  • PDF

Inhibitory Effects of Flavonoids on Growth of HT-29 Human Colon Cancer Cells (Flavonoid의 HT-29 대장암세포 증식 억제 효과)

  • Cho, Young;Choi, Mi-Yong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.3
    • /
    • pp.338-346
    • /
    • 2015
  • This study was performed to elucidate the anti-proliferative and apoptotic mechanism of flavonoids in HT-29 human colon cancer cells. We investigated the anti-proliferative activity of flavonoids in HT-29 human colon cancer cells via cell viability assay (MTT assay), caspase-3 activity, RT-PCR, and western blotting. We cultured HT-29 cells in the presence of various flavonoids (apigenin, rutin, naringenin, and myricetin) at a concentration of $100{\mu}M$. In the MTT assay, naringenin showed the strongest effect on cell viability in HT-29 colon cancer cells. Caspase-3 activity, a marker of apoptosis, significantly increased upon naringenin treatment. For RT-PCR, myricetin significantly increased Bax protein levels, naringenin increased p53 protein levels, and rutin reduced expression of the anti-apoptotic protein Bcl-2. Western blotting of HT-29 colon cancer cells showed that myricetin increased cleaved caspase-3 protein levels, naringenin significantly increased poly (ADP-ribose) polymerase protein levels, and rutin increased E-cadherin protein levels. These results indicate that flavonoid exerts anticancer effects on human colon HT-29 cells through a caspase-dependent apoptotic pathway.

Magnolol Attenuates Neuronal Cell Death Induced by Kynurenine Metabolite (키누레닌 대사산물에 의한 신경세포 손상에 대한 Magnolol의 보호효과에 대한 연구)

  • Lee, Chang-Uk;Lee, Hyun-Jung;Kim, Do-Hee;Jang, Yeong-Mi;Lee, Sang-Hyung;Jeong, Yoonh-Wa;Kim, Dae-Jin;Chung, Yoon-Hee;Kim, Kyung-Yong;Kim, Sung-Su;Lee, Won-Bok
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.2
    • /
    • pp.145-150
    • /
    • 2009
  • This study investigated the protective roles and mechanism of magnolol, from the stem bark of Magnolia officinalis against potential neurotoxin 3-hydroxykynurenine (3-HK)-induced neuronal cell death. For the evaluation of protective role of magnolol, we examined cell viability, apoptotic nuclei, change of mitochondrial membrane potential and caspase activity in human neuroblastoma SH-SY5Y cells. It was found that 3-HK induces neuronal cell death in the human neuroblastoma SH-SY5Y cell line. The reduced cell viability produced characteristic features such as cell shrinkages, plasma membrane blebbing, chromatin condensation, and nuclear fragmentation. The cells treated with 3-HK showed an increase in the concentration of reactive oxygen species (ROS) as well as in caspase activity. In addition, both are involved in the 3-HK-induced apoptosis. Magnolol attenuated the cell viability reduction by 3-HK in both a dose- and time-dependent manner. Optical microscopy showed that magnolol inhibited the cell morphological features in the 3-HK-treated cells. Furthermore, the increase in the ROS concentration and the caspase activities by 3-HK were also attenuated by magnolol. These results showed that magnolol has a protective effect on the 3-HK induced cell death by inhibiting ROS production and caspase activity.