• Title/Summary/Keyword: caspase 9

Search Result 644, Processing Time 0.051 seconds

Biochemical Changes in the Tissue of Mice Irradiated with LINAC (선형가속기를 이용한 방사선조사에서 생쥐조직의 생화학적 변화)

  • Choi, Seong-Kwan
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.3
    • /
    • pp.661-666
    • /
    • 2016
  • In this study, a linear accelerator (LINAC) through 3 Gy of radiation per body irradiated mice of the small intestine and the liver to produce in order to protect the cells after radiation exposure that caspase (caspase 3 &caspase 9) and NO (nitric oxide), and looked like to know cytokine of IL-6 and TNF-${\alpha}$, the result is as follows. First, caspase 3 & caspase 9 showed a noticeable increase in the radiation group than in the control group both small intestine and liver tissues (P <0.001). Second, NO are both intestine and liver tissue showed a marked increase in the radiation group than in the control group (P <0.001). Third, one of Cytokine IL-6 and TNF-${\alpha}$ showed a significant increase in the irradiated group than the control group both small intestine and liver tissues (P <0.001).

The Effect of Needle Electrode Electrical Stimulation on the Change of Caspase-3, 9 and Neuronal Nitric Oxide Synthase Immunoreactive Cells in the Sprague Dawley Rats (침전극 저주파자극이 흰쥐의 Caspase-3, 9와 Neuronal Nitric Oxide Synthase 면역반응세포 변화에 미치는 영향)

  • Kim, Soo-Han;Choi, Houng-Sik;Kim, Tack-Hoon;Cynn, Heon-Seock;Kim, Ji-Sung;Song, Chi-Won
    • Physical Therapy Korea
    • /
    • v.11 no.2
    • /
    • pp.47-63
    • /
    • 2004
  • In most tissues, apoptosis plays a pivotal role in normal development and in regulation of cell number. Therefore inappropriate apoptosis is revealed in a variety of diseases. This study was carried out to investigate the effects of acupuncture and needle electrode electrical stimulation on the change of caspase-3, 9 and neuronal nitric oxide synthase (nNOS) immunoreactive cells in the sprague dawley rats (SD rat). In immobilized SD rats (n=5), enhanced caspase-3 and caspase-9 expression were detected in the reticular part of substantia nigra, and enhanced nNOS was detected in the dorsolateral periaqueductal gray (DL-PAG) of midbrain and the paraventricular nucleus (PVN) of the hypothalamus using immunohistochemistry. Following the immobilization, acupuncture (n=5) and needle electrode electrical stimulation (n=5, 2 Hz) was applied at H$\acute{e}$g$\breve{u}$ (LI4) acupoint of SD rats, respectively. The stress-induced enhancement in the expression of caspase-3, 9 and nNOS were The present results demonstrate that and needle electrode electrical stimulation are effective in the modulation of expression of caspase-3, 9 and nNOS induced by immobilization.

  • PDF

Effects of Celecoxib on Cycle Kinetics of Gastric Cancer Cells and Protein Expression of Cytochrome C and Caspase-9

  • Wang, Yu-Jie;Niu, Xiao-Ping;Yang, Li;Han, Zhen;Ma, Ying-Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2343-2347
    • /
    • 2013
  • Objective: This investigation aimed to determine effects of celecoxib on the cell cycle kinetics of the gastric cancer cell line MGC803 and the mechanisms involved by assessing expression of cytochrome C and caspase-9 at the protein level. Methods: Cell proliferation of MGC803 was determined by MTT assay after treatment with celecoxib. Apoptosis was assessed using fluorescence staining and cell cycle kinetics by flow cytometry. Western blotting was used to detect the expression of caspase-9 protein and of cytochrome C protein in cell cytosol and mitochondria. Results: Celecoxib was able to restrain proliferation and induce apoptosis in a dose- and time-dependent manner, inducing G0/G1 cell cycle arrest, release of cytochrome C into the cytosol, and cleavage of pro-caspase-9 into its active form. Conclusion: Celecoxib can induce apoptosis in MGC803 cells through a mechanism involving cell cycle arrest, mitochondrial cytochrome C release and caspase activation.

A Natural L-Arginine Analog, L-Canavanine-Induced Apoptosis is Suppressed by Protein Tyrosine Kinase p56lck in Human Acute Leukemia Jurkat T Cells (인체 급성백혈병 Jurkat T 세포에 있어서 L-canavanine에 의해 유도되는 세포자살기전에 미치는 단백질 티로신 키나아제 p56lck의 저해 효과)

  • Park, Hae-Sun;Jun, Do-Youn;Woo, Hyun-Ju;Rue, Seok-Woo;Kim, Sang-Kook;Kim, Kyung-Min;Park, Wan;Moon, Byung-Jo;Kim, Young-Ho
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1529-1537
    • /
    • 2009
  • To elucidate further the antitumor effects of a natural L-arginine analogue, L-canavanine, the mechanism underlying apoptogenic activity of L-canavanine and its modulation by protein tyrosine kinase $p56^{lck}$ was investigated in human Jurkat T cells. When the cells were treated with 1.25 to 2.5 mM L-canavanine for 36 h, several apoptotic events including mitochondrial membrane potential (${\Delta\Psi}m$) loss, activation of caspase-9, -3, -8, and -7, poly (ADP-ribose) polymerase (PARP) degradation, and DNA fragmentation were induced without alteration in the levels of Fas or FasL. These apoptotic changes were more significant in $p56^{lck}$-deficient Jurkat clone JCaM1.6 than in $p56^{lck}$-positive Jurkat clone E6.1. The L-canavanine-induced apoptosis observed in $p56^{lck}$-deficient JCaM1.6 cells was significantly reduced by introducing $p56^{lck}$ gene into JCaM1.6 cells by stable transfection. Treatment of JCaM1.6/lck cells with L-canavanine caused a transient 1.6-fold increase in the kinase activity of $p56^{lck}$. Both FADD-positive wild-type Jurkat T cell clone A3 and FADD-deficient Jurkat T cell clone I2.1 exhibited a similar susceptibility to the cytotoxicity of L-canavanine, excluding involvement of Fas/FasL system in triggering L-canavanine-induced apoptosis. The L-canavanine-induced apoptotic sub-$G_1$ peak and activation of caspase-3, -8, and -7 were abrogated by pan-caspase inhibitor (z-VAD-fmk), whereas L-canavanine-induced activation of caspase-9 was not affected. These results demonstrated that L-canavanine caused apoptosis of Jurkat T cells via the loss of ${\Delta\Psi}m$, and the activation of caspase-9, -3, -8, and -7, leading to PARP degradation, and that the $p56^{lck}$ kinase attenuated the ${\Delta\Psi}m$ loss and activation of caspases, and thus contributed as a negative regulator to L-canavanine-induced apoptosis.

Neuroprotective Effects of Scopoletin on Neuro-damage caused by Alcohol in Primary Hippocampal Neurons

  • Lee, Jina;Cho, Hyun-Jeong
    • Biomedical Science Letters
    • /
    • v.26 no.2
    • /
    • pp.57-65
    • /
    • 2020
  • Excessive drinking of alcohol is known to be one of the main causes of various neurological diseases, such as Alzheimer's disease. Scopoletin is known to have anti-inflammatory and antioxidative properties, and to protect nerve cells. This study examined whether scopoletin inhibits the alcohol-induced apoptosis of primary hippocampal neurons, and how scopoletin regulates several factors associated with the caspase-mediated pathway. To achieve this, the cell viability and apoptosis rate of primary hippocampal neurons were measured by Cell Counting Kit-8 and flow cytometry, respectively. Apoptosis-related protein expressions (Bax, Bid, caspase-3, caspase-9, and Poly (ADP-ribose) polymerase (PARP)) were analyzed by Western blotting, and the ANOVA method was used to confirm the significance of the measured results. As a result, scopoletin inhibited the expressions of alcohol-induced apoptosis and apoptosis-related proteins in primary hippocampal neurons. These results suggest that down-regulation of Bid, Bax, and cleaved caspase-9 expression induced by scopoletin down-regulates the expression of cleaved caspase-3, inhibits the expression of cleaved PARP, and finally, inhibits mitochondrial apoptotic pathways. The study suggests that scopoletin is worth developing as a candidate for neuroprotective agent.

A Correlative Study on Amyloid β-Induced Cell Death Independent of Caspase Activation

  • Tuyet, Pham Thi Dieu
    • Journal of Integrative Natural Science
    • /
    • v.7 no.2
    • /
    • pp.87-91
    • /
    • 2014
  • Amyloid beta ($A{\beta}$) peptide has been implicated in the pathogenesis of Alzheimer's disease and has been reported to induce apoptotic death in cell culture. Cysteine Proteases, a family of enzymes known as caspases, mediate cell death in many models of apoptosis. In the present study, we examined the caspase activity and cell death in $A{\beta}$-treated SHSY5Y cells, as an attempt to elucidate the relationship between the type of caspase and $A{\beta}$-induced cell death. $A{\beta}$ at 20 ${\mu}M$ induce activation of caspase-3, 8 and 9 activity, but not the caspase-1. Caspase-3, 8 and 9 were processed by Ab treatment, consistent with the activity assay. Inhibition of the caspase activities by the selective inhibitors, however, marginally affected the cell death induced by $A{\beta}$. Taken together, the results indicate that $A{\beta}$-induced cell death may be independent of caspase activity and rather, the enzymes might be activated as a result of the cell death.

Gliotoxin-Induced Oxidative Stress Mediates the Apoptotic Death in Human Leukemic HL-60 cells (진균독소 Gliotoxin-유도성 산화적 손상에 의한 Apoptosis)

  • 장해란;김영희;김남송;원진숙;조정환;윤재도;임창인;김호찬;최익준
    • Toxicological Research
    • /
    • v.18 no.3
    • /
    • pp.275-283
    • /
    • 2002
  • Fungal metabolite, gliotoxin is an epipolythiodioxopiperazin (ETP) class and has various roles including immunomodulatory and apoptotic effects. This study was designed to evaluate the mechanism by which gliotoxin exerts the apoptosis on human promyelocytic leukemic HL-60 cells. Herein, we demonstrated that the gliotoxin decreased the cell viability in a time-dependent manner Gliotoxin-induced cell death was confirmed us apoptosis characterized by chromatin condensation and ladder-pattern fragmentation of genomic DNA. Gliotoxin increased the catalytic activities of caspase-3 and caspase-9. Activation of caspase-3 was further confirmed by degradation of procaspase-3 and poly(ADP-ribose) polymerase (PARP) by gliotoxin in HL-60 cells. Furthermore, gliotoxin induced the changes of mitochondrial transmembrane potential (MTP). Antioxidants, including GSH and NAC, markedly inhibited apoptosis with conistent suppression of enzymatic activity of caspase-3, caspase-9, and MTP loss in gliotoxin-treated cells. Taken together, we suggest that gliotoxin function as an oxidant and ploys proapoptotic roles in HL-60 cells via activation of intrinsic caspase cascades as well as mitochondrial dysfunction.

Effects of Arsenic Trioxide Alone and in Combination with Bortezomib in Multiple Myeloma RPMI 8266 Cells

  • Elmahi, Aadil Yousif;Niu, Chao;Li, Wei;Li, Dan;Wang, Guan-Jun;Hao, Shan-Shan;Cui, Jiu-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6469-6473
    • /
    • 2013
  • The aim of this study was to detect the efficiency of arsenic trioxide (ATO) alone or together with bortezomib to inhibit proliferation and induce apoptosis in a multiple myeloma (MM) RPMI 8266 cells. Mechanisms of action were also investigated. RPMI 8266 cells were treated with ATO alone and in combination with bortezomib for 24 hours, and cell viability was assessed by modified MTT. Annexin V-F1TC and PI staining was used to detect the apoptosis rate and cell cycling was investigated by flow cytometry, along with expression of cell surface death receptor-4(DR4) and death receptor-5 (DR5). Western blotting was applied to detect the expression of bcl-2, caspase-3, caspase-8, and caspase-9. As a result, the ATO combined with bortezomib group showed more inhibition of RPMI 8266 cell viability than theATO group. Expression of DR4 and DR5 on the cell surfaces, and the apoptosis rate were increased after treatment by ATO alone or combined with bortezomib. The cells appeared to arrest in G2/M phase after treatment. Expression of bcl-2 was more significantly decreased in the combination group, and that of caspase-3, caspase-8 and caspase-9 was significantly increased as well. Therefore, bortezomib can enhance ATO actions to induce apoptosis in RPMI 8266 cells, with decrease in expression of bcl-2 and increase of caspase-3, caspase-8 and caspase-9 proteins.

Distinct Pro-Apoptotic Properties of Zhejiang Saffron against Human Lung Cancer Via a Caspase-8-9-3 Cascade

  • Liu, Dan-Dan;Ye, Yi-Lu;Zhang, Jing;Xu, Jia-Ni;Qian, Xiao-Dong;Zhang, Qi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6075-6080
    • /
    • 2014
  • Lung cancer is the leading cause of cancer-related death worldwide. Here we investigated the antitumor effect and mechanism of Zhejiang (Huzhou and Jiande) saffron against lung cancer cell lines, A549 and H446. Using high performance liquid chromatography (HPLC), the contents of crocin I and II were determined. In vitro, MTT assay and annexin-V FITC/PI staining showed cell proliferation activity and apoptosis to be changed in a dose- and time-dependent manner. The inhibition effect of Jiande saffron was the strongest. In vivo, when mice were orally administered saffron extracts at dose of 100mg/kg/d for 28 days, xenograft tumor size was reduced, and ELISA and Western blotting analysis of caspase-3, -8 and -9 exhibited stronger expression and activity than in the control. In summary, saffron from Zhejiang has significant antitumor effects in vitro and in vivo through caspase-8-caspase-9-caspase-3 mediated cell apoptosis. It thus appears to have more potential as a therapeutic agent.

Apoptotic Signaling Cascade of 5-aminolaevulinic Acid-based Photodynamic Therapy in Human Promyelocytic Leukemia HL-60 Cells

  • Nagao, Tomokazu;Matsuzaki, Kazuki;Takahashi, Miho;Minamitani, Haruyuki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.509-511
    • /
    • 2002
  • In this study, we investigated apoptotic cell death induced by photodynamic therapy using 5-aminolaevulinic acid (ALA-PDT) in human promyelocytic leukemia cells (HL-60). ALA-PDT induced apoptosis in HL-60 cells as confirmed by DNA agarose gel electrophoresis and nuclear staining with Hoechst 33342. The apoptotic cell death was inhibited by addition of broad-spectrum caspase inhibitor Z-Asp-CH$_2$-DCB, indicating that the apoptotic cell death was induced in a caspase-dependent manner. Actually, western blotting analysis revealed that caspase-3 was processed as early as 1.5 h after ALA-PDT. Cytoplasmic cytochrome c released from mitochondria was detected by western blotting. However, inhibitor of caspase-9, a cysteine protease located in the downstream of cytochrome c release, was not able to reduce the apoptotic cell death. Therefore, the mitochondrial apoptotic pathway was not involved in the ALA-PDT-induced apoptosis. On the other hand, it was found that ALA-PDT-induced apoptosis was clearly inhibited by pretreatment of caspase-8 inhibitor. These data suggest that caspase-8-mediated apoptotic pathway is important in ALA-PDT-induced cell death.

  • PDF