• 제목/요약/키워드: casing and application

검색결과 34건 처리시간 0.021초

기구학적 전이를 이용한 케이싱 오실레이터의 순기구학 해석 (The Forward Kinematics Solution for Casing Oscillator Using the Kinematic Inversion)

  • 배형섭;백재호;박명관
    • 한국정밀공학회지
    • /
    • 제21권11호
    • /
    • pp.130-139
    • /
    • 2004
  • The Casing Oscillator is a bore file Equipment for the all-casing process. All-casing process is a method of foundation work in construction yard to oscillate steel Casing in the ground. The existing Casing Oscillator has some problem like not boring horizontally with disturbance and not driving Casing othor angle except horizon. To solve problem, the new structure Casing Oscillator is presented and studied. The performance of Casing Oscillator is improved by kinematics analysis. The Casing Oscillator is similar to the parallel manipulator in structure. So we obtain Inverse kinematics solution of Casing Oscillator easily. But it is difficult to solve forward kinematics of Casing Oscillator. T his paper presents a novel pose description corresponding to the structure characteristics of parallel manipulators. Through analysis on geometry theory, we obtain a new method of the closed-form solution to the forward kinematics using Kinematic Inversion. The closed-form solution contains two different meanings -analytical and real-time. So we reach the goal of practical application and control. Closed-form forward kinematics solution is verified by an inverse kinematics analysis. It shows that the method has a practical value for real -time control and inverse kinematics servo control.

Integrated Expansion Analysis of Pipe-In-Pipe Systems

  • 최한석
    • 한국해양공학회지
    • /
    • 제20권5호
    • /
    • pp.9-14
    • /
    • 2006
  • This paper presents an analytical method, application of expansion, mechanical design, and integrated expansion design of subsea insulated pipe-in-pipe (PIP) systems. PIP system consists of a flowline and a casing pipe for the transport of high temperature and high pressure product from the subsea wells. To prevent heat lass from the fiowline, insulation material is applied between the pipes. The fiawline pipe and the casing pipe have mechanical connections through steel ring plate (water stops) and bulkheads. Pipeline expansion is defined by temperature, internal pressure, soil resistance, and interaction force between the flowline and the casing pipe. The results of the expansion analysis, the mechanical design of connection system of the two pipes and tie-in spool design are integrated for the whole PIP system.

양송이의 균사생장(菌絲生長) 및 자실체(子寶體) 수량(收量)에 미치는 복토재료(覆土材料)의 이화학적(理化學的) 성질(性質)에 관(關)한 연구(硏究) (Studies on the Physico-Chemical Characteristics of Different Casing Materials Affecting Mycelial Growth and Yield of Cultivated Mushroom, Agaricus bisporus (Lange) Sing.)

  • 김동수
    • 한국균학회지
    • /
    • 제3권1호
    • /
    • pp.1-19
    • /
    • 1975
  • Since the importance of casing in fruit body formation of Agaricus bisporus has been emphasized, physico-chemical characteristics of casing materials were discussed by many workers and a mixture of peat and mineral soil as proper casing material has been adopted in many of mushroom growing countries. Because of limited resources of peat in Korea, it is necessary to find practical performance and substitutional materials for casing. The effect of casing on mycelial growth and mushroom yield of A. bisporus varied with materials, its combination and practices etc. The experiments to be discussed in this paper are concerned with pH and Ca of casing material which influence A bisporus, and changes of physico-chemical characteristics with mixing ratio of casing materials and its effect on A. bisporus. The optimum range of moisture content of each material, management of watering and application of physico-chemical characteristics casing materials was also investigated and re-use of weathered spent compost for casing material was described. 1. The effect of calcium on mycelial growth of A. bisporus at various pH in Halbschalentest showed different results with calcium sources. Best results were obtained around neutrality and fresh weight of fruit bodies grown in the range of pH 7 to 8 was highest among the tested levels. 2. Available moisture, pore space, organic matter, cation exchangeable capacity and exchangeable cation was increased by an increase of mixing ratio of peat in casing materials, while an adverse effect was obtained by addition of sand. 3. Mycelial growth on clay loam was more rapid at a lower bulk density of 0.75g/cc and at 20% moisture content on a dry weight basis at the same bulk density. 4. Mixing ratio of casing materials, 60 to 80 per cent by volume of peat mixed with 20 to 40 per cent of clay loam produced the highest yield of fresh fruit bodies and sand the lowest. However, per cent of open cap was highest in peat and lowest in sand. 5. Days required for fruit body initiation was shortened in mixtures of peat and clay loam by one to three days compared with other materials and the formation of flushes was clear. 6. The effect of some physico-chemical characteristics of casing materials on the fresh weight of fruit bodies were estimated by a multiple regression equation; Y=-923.86+$8.18X_1+8.04X_2+7.90X_3+0.12X_4+2.03X_5-0.82X_6-0.54X_7$ where $X_1,X_2,X_3,X_4,X_5,X_6,X_7$ are sand, silt, clay, available moistuer, porosity, organic matter and exchangeable cation respectively. The productivity of certain casing material could be predicted from this equation. 7. Fresh weight of fruit bodies was positively correlated with porosity exchangeable cation, organic matter, available moisture, silt and clay of materials; while sand was negatively correlated. On the contrary, sand was the unique factor reducing per cent of open cap. 8. Distribution of three phases of high productive casing material was concentrated in the range of 10 to 30 per cent solids, 15 to 30 per cent liquids, and 50 to 60 per cent in air volume. 9. Fresh weight of fruit bodies from peat was not affected with heavy watering but in clay loam and sandy loam severe crop losses occurred. Fresh weight of individual fruit was increased and open caps were decreased with heavy watering but light watering resulted in adverse effects: its effect was especially great in peat. 10. Optimum range of moisture content by weight on a dry basis was different with each casing material. To maintain optimum moisture content concerned with yield of fruit bodies and open cap, sandy loam and peat mixtures required daily watering of 0.6, 0.6 to 1. 2 and 1.2 to 2.4 liters per $3.3m^2$ of bed area, respectively. 11. Maximum yield of fruit body was recorded in the range of pF 2. 0 to 2. 5 of casing materials if organic matter content was below 4.2 per cent and in pF 1. 3 to 1.8 if above 7.1%. 12. pF curve of a certain casing material could be draws from moisture content at various pF values by multiple regression equations provided texture, organic matter and calcium of the casing material are given. Optimum moisture range of the casing materials also could be estimated by the equation. 13. It was possible to improve the phyico-chemical characteristics of clay loam and sandy loam by addition of weathered spent compost although the effect was less than in the case of peat. Fresh weight of fruit bodies wsa increased by addition of weathered spent compost but its effect was not as remarkable as peat. Accordingly, further studies will be required.

  • PDF

3D Casing-Distributor Analysis for Hydraulic Design Application

  • Devals, Christophe;Zhang, Ying;Dompierre, Julien;Vu, Thi C.;Mangani, Luca;Guibault, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권3호
    • /
    • pp.142-154
    • /
    • 2015
  • Nowadays, computational fluid dynamics is commonly used by design engineers to evaluate and compare losses in hydraulic components as it is less expensive and less time consuming than model tests. For that purpose, an automatic tool for casing and distributor analysis will be presented in this paper. An in-house mesh generator and a Reynolds Averaged Navier-Stokes equation solver using the standard $k-{\omega}$ shear stress transport (SST) turbulence model will be used to perform all computations. Two solvers based on the C++ OpenFOAM library will be used and compared to a commercial solver. The performance of the new fully coupled block solver developed by the University of Lucerne and Andritz will be compared to the standard 1.6ext segregated simpleFoam solver and to a commercial solver. In this study, relative comparisons of different geometries of casing and distributor will be performed. The present study is thus aimed at validating the block solver and the tool chain and providing design engineers with a faster and more reliable analysis tool that can be integrated into their design process.

공내수 및 케이싱이 시추공 전자탐사 반응에 미치는 영향 (Effect of Borehole Fluid and Casing on the Borehole Electromagnetic Responses)

  • 조성준;김정호;이명종;정승환;송윤호
    • 지구물리와물리탐사
    • /
    • 제2권2호
    • /
    • pp.104-111
    • /
    • 1999
  • 지하 매질의 전기적 물성 분포를 영상화하기 위한 전자탐사 토모그래피 기술개발의 일환으로 시추공의 공내수 및 케이싱이 전자탐사 반응에 미치는 영향을 정량적으로 분석하였다. 먼저 시추공에 공내수가 존재할 때 공내수의 전기전도도를 달리하며 계산한 전자탐사 반응을 고찰한 결과, 단일 시추공 탐사의 경우 송신기에 인접한 곳을 제외하고는 전자탐사 반응은 공내수에 영향받지 않는다. 시추공간 전자탐사의 경우 역시 공내수의 영향을 무시할 수 있어, 전자탐사 토모그래피의 다양한 적용 가능성을 확인하였다. 시추공에 철재 케이싱이 설치되어 있을 때, 단일 시추공 전자탐사 반응은 전적으로 케이싱에 의한 반응이며 주변 매질에 의한 영향은 무시할 수 있는 수준이다. 한편 시추공간 탐사에서는 모암의 전기전도도에 따른 영향을 감지할 수 있으나, 시추공간의 거리가 모암의 표피심도에 비해 매우 가까우면, 근거리장 효과에 의해 모암의 영향이 미약하게 되며 반대로 시추공간의 거리가 멀 경우에는 케이싱에 의한 에너지의 극심한 감쇠로 인해 신호의 측정이 불가능해진다. 따라서 적정수준의 신호수준을 유지하며 모암의 반응을 얻기 위해서는 케이싱의 특성 및 모암의 표피심도를 동시에 고려하여 주파수 범위를 결정해야 하며, 특히 단일 시추공 자료를 이용하여 케이싱의 특성을 정확히 규명할 수 있는 현장탐사 기술의 도움이 요구된다.

  • PDF

Development of a Large 3D printer for Manufacturing Form-Liner and Protective Skin of Concrete Structures

  • Jang, Jungsik;Hong, Kee-Jeung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권3호
    • /
    • pp.74-86
    • /
    • 2020
  • This study discussesresearch and development of large-sized 3D printers that can be applied to construction and civil engineering for various designs of protective casing on foam liner for concrete exteriors. The consistent use of concrete represents the current surroundings. However, concrete exteriors in Korea have not considered the regional characteristics, but the concrete has been poured solely for economical aspects for the last decade or two. There are many cases of poor installation and not enough design development projects to correct it. This study was conducted to apply various patterns, regional characteristics, and 3D printing for protective casing design for foam liner to create various designs for the concrete walls. Therefore, we started researching on a large 3D printer, and designed and developed this system. Considering the chronological process, the properties of concrete structures were identified, the application of designs for concrete in Korea and abroad and the 3D printing materials for the protective casing were surveyed and analyzed, and a stereotype was produced in the first year to study designs for the beauty of concrete surfaces. In the second year, images of regional characteristics were gathered, design ideas for regional promotion were derived, virtual images were produced along with design modeling to simulate the appearances, and verify the effect of application and promotion. Finally, in the third year, the 3D printer for concrete foam liner was constantly improved to analyze the 3D printing program and the various library elements to complete an actual large-sized 3D printer.

수치기법을 이용한 원심홴 소음의 음향학적 상사법칙 적용 (An Application of the Acoustic Similarity Law to Centrifugal Fan Noise by Numerical Calculation)

  • 전완호;이덕주
    • 소음진동
    • /
    • 제9권5호
    • /
    • pp.955-965
    • /
    • 1999
  • Centrifugal fans are widely used and the noise generated by the these machines causes one of the most serious problems. In general, the centrifugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the flow discharged form the impeller and the cutoff in the casing. However, only a few researches have been carried out on predicting the noise because of the difficulty in obtaining detailed information about the flow field and casing effects on noise radiation. The objective of this study is to understand the generation mechanism of sound and to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal fan. We assume that the impeller rotates with a constant angular velocity and the flow field of the impeller is incompressible and inviscid. So, a discrete vortex method (DVM) is used to model the centrifugal by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. A centrifugal impeller and wedge introduced by Weidemann are used in the numerical calculation and the results are compared with the experimental data. Reasonable results are obtained not only for the peak frequencies but also for the amplitudes of the tonal sound.

  • PDF

자동차 밀폐형 워터펌프의 토출구 형상이 수력성능에 미치는 영향 (Effect of Shape of Discharge Port on Hydraulic Performance of Automotive Closed Type Water Pump)

  • 허형석;이기수;배석정
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.39-47
    • /
    • 2006
  • Recent trend in pursuit of high performance and effectiveness for automotive cooling system has changed the application of material for impeller of automotive water pump from metal to high ability engineering resin, which can achieve optimization of design of impeller geometry and realize lightweight high efficiency water pump. Closed type water pump improves hydraulic loss of fluid through the clearance between volute casing and impeller compared with that of the existing open type water pump(Although closed type is heavier than open type for the same size and same material, adoption of plastics can solve the problem.). In the present study, the characteristics of hydraulic performance of closed type water pump were investigated with respect to the angle between shroud and hub of impeller and the shape of discharge port of volute casing. Performance tests were carried out for 4 cases, that is, for 2 impellers and 2 casings. The modification of shape of only discharge port can enhance the hydraulic performance by 10 percent and the pump efficiency by 4-6 percent.

횡류형 파워터빈의 최적화 설계에 관한 수치해석 연구 (A Numerical Study on an Optimum Design of a Cross-flow Type Power Turbine (CPT))

  • 하진호;김현철;김철호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3050-3055
    • /
    • 2007
  • A wind turbine is one of the most popular energy conversion systems to generate electricity from the natural renewable energy source and an axial-flow type wind turbine is the most popular system for the electricity generation in the wind farm nowadays. In this study, a cross-flow type turbine has been studied for the application of wind turbine for electricity generation. The target capacity of electric power generation of the model wind turbine developing on the project is 12 volts, 130A/H (about 1.56kW). The important design parameters of the model turbine impeller are the inlet and exit angle of the turbine blade, number of blade, hub/tip ratio and the exit flow angle of the casing. In this study, the radial equilibrium theorem was used to decide the inlet and exit angle of the impller blade and CFD technique was used to have the performance analysis of the designed model power turbine to find out the optimum geometry of the CPT impeller and casing. The designed CPT with 24 impeller blades at ${\alpha}=82^{\circ}$, ${\beta}=40^{\circ}$ of turbine blade angle was estimated to generate 284.6 N.m of indicated torque and 2.14kW of indicated power.

  • PDF

원심펌프의 성능개선과 캐비테이션 억제에 관한 연구 (Improvement of Pump Performance and Suppression of Cavitation in a Centrifugal Pump)

  • 최영도;쿠로카와준이치
    • 한국유체기계학회 논문집
    • /
    • 제11권1호
    • /
    • pp.18-25
    • /
    • 2008
  • Recent trends of a centrifugal pump are high speed in rotation and high pressure in head with high efficiency to meet the demands of industries. However, the newly developed pumps make trouble of pressure pulsation in the pumping system by performance instability of the pump. Moreover, cavitation, which is a main obstacle of high rotational speed in the pump, occurring in an impeller gives serious damages to the impeller and casing wall. The purpose of present study is not only to develop a simple method to improve pump performance but also to suppress the occurrence of cavitation in the centrifugal pump by use of J-Groove. J-Groove is a shallow groove installed on the casing wall in the meridional direction. The application of J-Groove to a centrifugal pump with a new type impeller of "semi-closed impeller" has proved its effectiveness as a useful countermeasure of the unstable pump performance and cavitation. The results show that the combination of semi-closed impeller and J-Groove can be applied successfully and improves both the pump performance and suction performance.