• Title/Summary/Keyword: case-based recognition

Search Result 602, Processing Time 0.027 seconds

A Study on Speech Recognition based on Phoneme for Korean Subway Station Names (한국의 지하철역명을 위한 음소 기반의 음성인식에 관한 연구)

  • Kim, Beom-Seung;Kim, Soon-Hyob
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.3
    • /
    • pp.228-233
    • /
    • 2011
  • This paper presented the method about the Implementation of Speech Recognition based on phoneme considering the phonological characteristic for Korean Subway Station Names. The Pronunciation dictionary considering PLU set and phonological variations with four Case in order to select the optimum PLU used for Speech Recognition based on phoneme for Korean Subway Station Names was comprised and the recognition rate was estimated. In the case of the applied PLU, we could know the optimum recognition rate(97.74%) be shown in the triphone model in case of considering the recognition unit division of the initial consonant and final consonant and phonological variations.

Rule-based Named Entity (NE) Recognition from Speech (음성 자료에 대한 규칙 기반 Named Entity 인식)

  • Kim Ji-Hwan
    • MALSORI
    • /
    • no.58
    • /
    • pp.45-66
    • /
    • 2006
  • In this paper, a rule-based (transformation-based) NE recognition system is proposed. This system uses Brill's rule inference approach. The performance of the rule-based system and IdentiFinder, one of most successful stochastic systems, are compared. In the baseline case (no punctuation and no capitalisation), both systems show almost equal performance. They also have similar performance in the case of additional information such as punctuation, capitalisation and name lists. The performances of both systems degrade linearly with the number of speech recognition errors, and their rates of degradation are almost equal. These results show that automatic rule inference is a viable alternative to the HMM-based approach to NE recognition, but it retains the advantages of a rule-based approach.

  • PDF

A Study on Word Recognition using sub-model based Hidden Markov Model (HMM 부모델을 이용한 단어 인식에 관한 연구)

  • 신원호
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.395-398
    • /
    • 1994
  • In this paper the word recognition using sub-model based Hidden Markov Model was studied. Phoneme models were composed of 61 phonemes in therms of Korean language pronunciation characteristic. Using this, word model was maded by serial concatenation. But, in case of this phoneme concatenation, the second and the third phoneme of syllable are overlapped in distribution at the same time. So considering this, the method that combines the second and the third phoneme to one model was proposed. And to prevent the increase in number of model, similar phonemes were combined to one, and finially, 57 models were created. In experiment proper model structure of sub-model was searched for, and recognition results were compared. So similar recognition results were maded, and overall recognition rates were increased in case of using parameter tying method.

  • PDF

A Performance Analysis of the Face Recognition Based on PCA/LDA on Distance Measures (거리 척도에 따른 PCA/LDA기반의 얼굴 인식 성능 분석)

  • Song Young-Jun;Kim Young-Gil;Ahn Jae-Hyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.3
    • /
    • pp.249-254
    • /
    • 2005
  • In this paper, we analysis the recognition performance of PCA/LDA by distance measures. We are adapt to ORL face database with the fourteen distance measures. In case of PCA, it has high performance for the manhattan distance and the weighted SSE distance to face recognition, In case of PCA/LDA, it has high performance for the angle-based distance and the modified SSE distance. Also, PCA/LDA is better than PCA for reduction of dimension. Therefore, the PCA/LDA method and the angle-based distance have the most performance and a few dimension for face recognition with ORL face database.

  • PDF

Speech Recognition using MSHMM based on Fuzzy Concept

  • Ann, Tae-Ock
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2E
    • /
    • pp.55-61
    • /
    • 1997
  • This paper proposes a MSHMM(Multi-Section Hidden Markov Model) recognition method based on Fuzzy Concept, as a method on the speech recognition of speaker-independent. In this recognition method, training data are divided into several section and multi-observation sequences given proper probabilities by fuzzy rule according to order of short distance from MSVQ codebook per each section are obtained. Thereafter, the HMM per each section using this multi-observation sequences is generated, and in case of recognition, a word that has the most highest probability is selected as a recognized word. In this paper, other experiments to compare with the results of these experiments are implemented by the various conventional recognition methods(DP, MSVQ, DMS, general HMM) under the same data. Through results of all-round experiment, it is proved that the proposed MSHMM based on fuzzy concept is superior to DP method, MSVQ method, DMS model and general HMM model in recognition rate and computational time, and does not decreases recognition rate as 92.91% in spite of increment of speaker number.

  • PDF

HMM-Based Automatic Speech Recognition using EMG Signal

  • Lee Ki-Seung
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.3
    • /
    • pp.101-109
    • /
    • 2006
  • It has been known that there is strong relationship between human voices and the movements of the articulatory facial muscles. In this paper, we utilize this knowledge to implement an automatic speech recognition scheme which uses solely surface electromyogram (EMG) signals. The EMG signals were acquired from three articulatory facial muscles. Preliminary, 10 Korean digits were used as recognition variables. The various feature parameters including filter bank outputs, linear predictive coefficients and cepstrum coefficients were evaluated to find the appropriate parameters for EMG-based speech recognition. The sequence of the EMG signals for each word is modelled by a hidden Markov model (HMM) framework. A continuous word recognition approach was investigated in this work. Hence, the model for each word is obtained by concatenating the subword models and the embedded re-estimation techniques were employed in the training stage. The findings indicate that such a system may have a capacity to recognize speech signals with an accuracy of up to 90%, in case when mel-filter bank output was used as the feature parameters for recognition.

Speech Recognition Using HMM Based on Fuzzy (피지에 기초를 둔 HMM을 이용한 음성 인식)

  • 안태옥;김순협
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.12
    • /
    • pp.68-74
    • /
    • 1991
  • This paper proposes a HMM model based on fuzzy, as a method on the speech recognition of speaker-independent. In this recognition method, multi-observation sequences which give proper probabilities by fuzzy rule according to order of short distance from VQ codebook are obtained. Thereafter, the HMM model using this multi-observation sequences is generated, and in case of recognition, a word that has the most highest probability is selected as a recognized word. The vocabularies for recognition experiment are 146 DDD are names, and the feature parameter is 10S0thT LPC cepstrum coefficients. Besides the speech recognition experiments of proposed model, for comparison with it, we perform the experiments by DP, MSVQ and general HMM under same condition and data. Through the experiment results, it is proved that HMM model using fuzzy proposed in this paper is superior to DP method, MSVQ and general HMM model in recognition rate and computational time.

  • PDF

The Learning of the Neural Network Using Hadamard Transform

  • Katayama, Hiromu;Tsuruta, Shinchi;Nakao, Tomohiro;Harada, Hisamochi;Konishi, Ryosuke
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1125-1128
    • /
    • 1993
  • We propose the new method about the neural-based pattern recognition by using Hadamard transform for the improvement of learning speed, stability and flexibility of network. We can obtain the spatial feature of pattern by Hadamard transformed pattern. We carried out an experiment to estimate the effect of Hadamard transform. We tried the learning of numeric patterns, and tried the pattern recognition with noisy pattern. As a result, the learning times of the network for the 'Hadamard' case is smaller than that of usual case. And the recognition rate of the network for the 'Hadamard' case is higher than that of usual case, too.

  • PDF

Multi-view Human Recognition based on Face and Gait Features Detection

  • Nguyen, Anh Viet;Yu, He Xiao;Shin, Jae-Ho;Park, Sang-Yun;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1676-1687
    • /
    • 2008
  • In this paper, we proposed a new multi-view human recognition method based on face and gait features detection algorithm. For getting the position of moving object, we used the different of two consecutive frames. And then, base on the extracted object, the first important characteristic, walking direction, will be determined by using the contour of head and shoulder region. If this individual appears in camera with frontal direction, we will use the face features for recognition. The face detection technique is based on the combination of skin color and Haar-like feature whereas eigen-images and PCA are used in the recognition stage. In the other case, if the walking direction is frontal view, gait features will be used. To evaluate the effect of this proposed and compare with another method, we also present some simulation results which are performed in indoor and outdoor environment. Experimental result shows that the proposed algorithm has better recognition efficiency than the conventional sing]e view recognition method.

  • PDF

A technology of realistic multi-media display and odor recognition using olfactory sensors (후각 센서를 이용한 냄새 인식 및 실감형 멀티미디어 표현 기술)

  • Lee, Hyeon Gu;Rho, Yong Wan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.4
    • /
    • pp.33-43
    • /
    • 2010
  • In this paper, we propose a floral scent recognition using odor sensors and a odor display using odor distribution system. Proposed odor recognition has method of correlation coefficient between sensors that select optimal sensors in floral scent recognition system of selective multi-sensors. Proposed floral scent recognition system consists of four module such as floral scent acquisition module, optimal sensor decision module, entropy-based floral scent detection module, and floral scent recognition module. Odor distribution system consists of generation module of distribution information, control module of distribution, output module of distribution. We applied to floral scent recognition for performance evaluation of proposed sensors decision method. As a result, application of proposed method with floral scent recognition obtained recognition rate of 95.67% case of using 16 sensors while applied floral scent recognition system of proposed sensor decision method confirmed recognition rate of 96% using only 8 sensors. Also, we applied to odor display of proposed method and obtained 3.18 thorough MOS experimentation.